159 research outputs found

    Identification and characterization of a new ensemble of cometary organic molecules.

    Get PDF
    In-situ study of comet 1P/Halley during its 1986 apparition revealed a surprising abundance of organic coma species. It remained unclear, whether or not these species originated from polymeric matter. Now, high-resolution mass-spectrometric data collected at comet 67P/Churyumov-Gerasimenko by ESA's Rosetta mission unveil the chemical structure of complex cometary organics. Here, we identify an ensemble of individual molecules with masses up to 140 Da while demonstrating inconsistency of the data with relevant amounts of polymeric matter. The ensemble has an average composition of C1H1.56O0.134N0.046S0.017, identical to meteoritic soluble organic matter, and includes a plethora of chain-based, cyclic, and aromatic hydrocarbons at an approximate ratio of 6:3:1. Its compositional and structural properties, except for the H/C ratio, resemble those of other Solar System reservoirs of organics-from organic material in the Saturnian ring rain to meteoritic soluble and insoluble organic matter -, which is compatible with a shared prestellar history

    A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization

    Full text link
    This paper describes the design, realization and operation of a prototype liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the development of a novel online monitoring and calibration system exploiting UV laser beams. In particular, the system is intended to measure the lifetime of the primary ionization in LAr, in turn related to the LAr purity level. This technique could be exploited by present and next generation large mass LAr TPCs for which monitoring of the performance and calibration plays an important role. Results from the first measurements are presented together with some considerations and outlook.Comment: 26 pages, 27 figure

    DNA Fingerprinting of Pearls to Determine Their Origins

    Get PDF
    We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry

    Volatiles in the H2_2O and CO2_2 ices of comet 67P/Churyumov-Gerasimenko

    Full text link
    ESA's Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko (67P) was the first mission that accompanied a comet over a substantial fraction of its orbit. On board was the ROSINA mass spectrometer suite to measure the local densities of the volatile species sublimating from the ices inside the comet's nucleus. Understanding the nature of these ices was a key goal of Rosetta. We analyzed the primary cometary molecules at 67P, namely H2_2O and CO2_2, together with a suite of minor species for almost the entire mission. Our investigation reveals that the local abundances of highly volatile species, such as CH4_4 and CO, are reproduced by a linear combination of both H2_2O and CO2_2 densities. These findings bear similarities to laboratory-based temperature programmed desorption experiments of amorphous ices and imply that highly volatile species are trapped in H2_2O and CO2_2 ices. Our results do not show the presence of ices dominated by these highly volatile molecules. Most likely, they were lost due to thermal processing of 67P's interior prior to its deflection to the inner solar system. Deviations in the proportions co-released with H2_2O and CO2_2 can only be observed before the inbound equinox, when the comet was still far from the sun and the abundance of highly volatile molecules associated with CO2_2 outgassing were lower. The corresponding CO2_2 is likely seasonal frost, which sublimated and lost its trapped highly volatile species before re-freezing during the previous apparition. CO, on the other hand, was elevated during the same time and requires further investigation.Comment: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://doi.org/10.1093/mnras/stad300

    Volatiles in the H2O and CO2 ices of comet 67P/Churyumov–Gerasimenko

    Get PDF
    European Space Agency’s Rosetta spacecraft at comet 67P/Churyumov–Gerasimenko (67P) was the first mission that accompanied a comet over a substantial fraction of its orbit. On board was the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer suite to measure the local densities of the volatile species sublimating from the ices inside the comet’s nucleus. Understanding the nature of these ices was a key goal of Rosetta. We analysed the primary cometary molecules at 67P, namely H2O and CO2, together with a suite of minor species for almost the entire mission. Our investigation reveals that the local abundances of highly volatile species, such as CH4 and CO, are reproduced by a linear combination of both H2O and CO2 densities. These findings bear similarities to laboratory-based temperature-programmed desorption experiments of amorphous ices and imply that highly volatile species are trapped in H2O and CO2 ices. Our results do not show the presence of ices dominated by these highly volatile molecules. Most likely, they were lost due to thermal processing of 67P’s interior prior to its deflection to the inner solar system. Deviations in the proportions co-released with H2O and CO2 can only be observed before the inbound equinox, when the comet was still far from the sun and the abundance of highly volatile molecules associated with CO2 outgassing were lower. The corresponding CO2 is likely seasonal frost, which sublimated and lost its trapped highly volatile species before re-freezing during the previous apparition. CO, on the other hand, was elevated during the same time and requires further investigation

    Recent advances and remaining challenges in thin-film silicon photovoltaic technology

    Get PDF
    This contribution reviews some of the latest achievements and challenges in thin-film silicon photovoltaic (PV) technology based on amorphous and nanocrystalline silicon and their alloys. We address material and device developments, including (i) improved plasma deposition processes to achieve high-quality dense absorber materials; (ii) absorber layers based on silicon tetrafluoride, which lead to enhanced absorption in the near-infrared and yield outstanding short-circuit current densities; (iii) dedicated optimization of the interfaces and device architecture, as well as (iv) enhanced light harvesting by means of multi-scale textured substrates and reduced parasitic absorption in the non-active layers. This paper will describe how, by combining all of these advances along with precise control of plasmas over large areas, key results have been achieved in recent years, at both the cell and large-area module level, with stabilized efficiencies of over 13 and 12%, respectively

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Cometary dust analogues for physics experiments

    Get PDF
    The CoPhyLab (Cometary Physics Laboratory) project is designed to study the physics of comets through a series of earth-based experiments. For these experiments, a dust analogue was created with physical properties comparable to those of the non-volatile dust found on comets. This "CoPhyLab dust" is planned to be mixed with water and CO2_2 ice and placed under cometary conditions in vacuum chambers to study the physical processes taking place on the nuclei of comets. In order to develop this dust analogue, we mixed two components representative for the non-volatile materials present in cometary nuclei. We chose silica dust as representative for the mineral phase and charcoal for the organic phase, which also acts as a darkening agent. In this paper, we provide an overview of known cometary analogues before presenting measurements of eight physical properties of different mixtures of the two materials and a comparison of these measurements with known cometary values. The physical properties of interest are: particle size, density, gas permeability, spectrophotometry, mechanical, thermal and electrical properties. We found that the analogue dust that matches the highest number of physical properties of cometary materials consists of a mixture of either 60\%/40\% or 70\%/30\% of silica dust/charcoal by mass. These best-fit dust analogue will be used in future CoPhyLab experiments

    Using Classical Population Genetics Tools with Heterochroneous Data: Time Matters!

    Get PDF
    BACKGROUND:New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. METHODOLOGY/PRINCIPAL FINDINGS:We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). CONCLUSIONS/SIGNIFICANCE:Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically considering heterochroneous models when analyzing heterochroneous samples covering a large time scale
    corecore