129 research outputs found

    Cortical Surface Area and Cortical Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human Cortex

    Get PDF
    This investigation provides an analysis of structural asymmetries in 5 anatomically defined regions (Heschl's gyrus, HG; Heschl's sulcus, HS; planum temporale, PT; planum polare, PP; superior temporal gyrus, STG) within the human auditory-related cortex. Volumetric 3-dimensional T1-weighted magnetic resonance imaging scans were collected from 104 participants (52 males). Cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) were calculated based on individual scans of these anatomical traits. This investigation demonstrates a leftward asymmetry for CV and CSA that is observed in the HG, STG, and PT regions. As regards CT, we note a rightward asymmetry in the HG and HS. A correlation analysis of asymmetry indices between measurements for distinct regions of interest (ROIs) yields significant correlations between CT and CV in 4 of 5 ROIs (HG, HS, PT, and STG). Significant correlation values between CSA and CV are observed for all 5 ROIs. The findings suggest that auditory-related cortical areas demonstrate larger leftward asymmetry with respect to the CSA, while a clear rightward asymmetry with respect to CT is salient in both the primary and the secondary auditory cortex only. In addition, we propose that CV is not an ideal neuromarker for anatomical measurements. CT and CSA should be considered independent traits of anatomical asymmetries in the auditory-related corte

    The desire for healthy limb amputation: structural brain correlates and clinical features of xenomelia

    Get PDF
    Xenomelia is the oppressive feeling that one or more limbs of one's body do not belong to one's self. We present the results of a thorough examination of the characteristics of the disorder in 15 males with a strong desire for amputation of one or both legs. The feeling of estrangement had been present since early childhood and was limited to a precisely demarcated part of the leg in all individuals. Neurological status examination and neuropsychological testing were normal in all participants, and psychiatric evaluation ruled out the presence of a psychotic disorder. In 13 individuals and in 13 pair-matched control participants, magnetic resonance imaging was performed, and surface-based morphometry revealed significant group differences in cortical architecture. In the right hemisphere, participants with xenomelia showed reduced cortical thickness in the superior parietal lobule and reduced cortical surface area in the primary and secondary somatosensory cortices, in the inferior parietal lobule, as well as in the anterior insular cortex. A cluster of increased thickness was located in the central sulcus. In the left hemisphere, affected individuals evinced a larger cortical surface area in the inferior parietal lobule and secondary somatosensory cortex. Although of modest size, these structural correlates of xenomelia appear meaningful when discussed against the background of some key clinical features of the disorder. Thus, the predominantly right-sided cortical abnormalities are in line with a strong bias for left-sided limbs as the target of the amputation desire, evident both in our sample and in previously described populations with xenomelia. We also propose that the higher incidence of lower compared with upper limbs (∼80% according to previous investigations) may explain the erotic connotations typically associated with xenomelia, also in the present sample. These may have their roots in the proximity of primary somatosensory cortex for leg representation, whose surface area was reduced in the participants with xenomelia, with that of the genitals. Alternatively, the spatial adjacency of secondary somatosensory cortex for leg representation and the anterior insula, the latter known to mediate sexual arousal beyond that induced by direct tactile stimulation of the genital area, might play a role. Although the right hemisphere regions of significant neuroarchitectural correlates of xenomelia are part of a network reportedly subserving body ownership, it remains unclear whether the structural alterations are the cause or rather the consequence of the long-standing and pervasive mismatch between body and sel

    Neural Correlates of Body Integrity Dysphoria

    Full text link
    There are few things as irrefutable as the evidence that our limbs belong to us. However, persons with body integrity dysphoria (BID) [1] deny the ownership of one of their fully functional limbs and seek its amputation [2]. We tapped into the brain mechanisms of BID, examining sixteen men desiring the removal of the left healthy leg. The primary sensorimotor area of the to-be-removed leg and the core area of the conscious representation of body size and shape (the right superior parietal lobule [rSPL]) [3, 4] were less functionally connected to the rest of the brain. Furthermore, the left premotor cortex, reportedly involved in the multisensory integration of limb information [5-7], and the rSPL were atrophic. The more atrophic the rSPL, the stronger the desire for amputation, and the more an individual pretended to be an amputee by using wheelchairs or crutches to solve the mismatch between the desired and actual body. Our findings illustrate the pivotal role of the connectivity of the primary sensorimotor limb area in the mediation of the feeling of body ownership. They also delineate the morphometric and functional alterations in areas of higher-order body representation possibly responsible for the dissatisfaction with a standard body configuration. The neural correlates of BID may foster the understanding of other neuropsychiatric disorders involving the bodily self. Ultimately, they may help us understand what most of us take for granted, i.e., the experience of body and self as a seamless unity

    Developmental dyscalculia: a dysconnection syndrome?

    Get PDF
    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia

    Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance

    Get PDF
    Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at > 500000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the ‘at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memor

    Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks

    Get PDF
    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logi

    Morphological brain differences between adult stutterers and non-stutterers

    Get PDF
    BACKGROUND: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. METHODS: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. RESULTS: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. CONCLUSIONS: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question
    corecore