63 research outputs found

    Mu-DNA: a modular universal DNA extraction method adaptable for a wide range of sample types

    Get PDF
    Efficient DNA extraction is fundamental to molecular studies. However, commercial kits are expensive when a large number of samples need to be processed. Here we present a simple, modular and adaptable DNA extraction ‘toolkit’ for the isolation of high purity DNA from multiple sample types (modular universal DNA extraction method or Mu-DNA). We compare the performance of our method to that of widely used commercial kits across a range of soil, stool, tissue and water samples. Mu-DNA produced DNA extractions of similar or higher yield and purity to that of the commercial kits. As a proof of principle, we carried out replicate fish metabarcoding of aquatic eDNA extractions, which confirmed that the species detection efficiency of our method is similar to that of the most frequently used commercial kit. Our results demonstrate the reliability of Mu-DNA along with its modular adaptability to challenging sample types and sample collection methods. Mu-DNA can substantially reduce the costs and increase the scope of experiments in molecular studies

    The genome sequence of the stone loach, Barbatula barbatula (Linnaeus, 1758)

    Get PDF
    We present a genome assembly from an individual female Barbatula barbatula (the stone loach; Chordata; Actinopteri; Cypriniformes; Nemacheilidae). The genome sequence is 617.6 megabases in span. Most of the assembly is scaffolded into 25 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 16.64 kilobases in length

    High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps

    Get PDF
    Background Sexual system is a key factor affecting the genetic diversity, population structure, genome structure and the evolutionary potential of species. The sexual system androdioecy – where males and hermaphrodites coexist in populations – is extremely rare, yet is found in three crustacean groups, barnacles, a genus of clam shrimps Eulimnadia, and in the order Notostraca, the tadpole shrimps. In the ancient crustacean order Notostraca, high morphological conservatism contrasts with a wide diversity of sexual systems, including androdioecy. An understanding of the evolution of sexual systems in this group has been hampered by poor phylogenetic resolution and confounded by the widespread occurrence of cryptic species. Here we use a multigene supermatrix for 30 taxa to produce a comprehensive phylogenetic reconstruction of Notostraca. Based on this phylogenetic reconstruction we use character mapping techniques to investigate the evolution of sexual systems. We also tested the hypothesis that reproductive assurance has driven the evolution of androdioecy in Notostraca. Results Character mapping analysis showed that sexual system is an extremely flexible trait within Notostraca, with repeated shifts between gonochorism and androdioecy, the latter having evolved a minimum of five times. In agreement with the reproductive assurance hypothesis androdioecious notostracans are found at significantly higher latitudes than gonochoric ones indicating that post glacial re-colonisation may have selected for the higher colonisation ability conferred by androdioecy. Conclusions In contrast to their conserved morphology, sexual system in Notostraca is highly labile and the rare reproductive mode androdioecy has evolved repeatedly within the order. Furthermore, we conclude that this lability of sexual system has been maintained for at least 250 million years and may have contributed to the long term evolutionary persistence of Notostraca. Our results further our understanding of the evolution of androdioecy and indicate that reproductive assurance is a recurrent theme involved in the evolution of this sexual system

    Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples — first record of Gammarus fossarum in the UK

    Get PDF
    © 2017 The Author(s). and 2017 REABIC. We report the discovery of a non-native gammarid, Gammarus fossarum (Koch, 1836) (Crustacea, Amphipoda), in UK rivers. Gammarus fossarum is a common freshwater gammarid in many parts of mainland Europe, but was previously considered absent from the UK. Gammarus fossarum was detected in a number of UK rivers following DNA metabarcoding of a mini-barcode region of the COI gene in macroinvertebrate kick samples, and environmental DNA (eDNA) from water and sediment samples. Subsequent morphological analysis and standard DNA barcoding showed that the species could be reliably identified and separated from Gammarus pulex (Linnaeus, 1758), the most dominant and widespread native freshwater gammarid in the UK. Our data demonstrate extensive geographical coverage of G. fossarum in the UK, spanning distant river catchments. At present there is no data to confirm the likely origin of G. fossarum’s introduction. Subsequent re-examination of historic archive material shows the species to have been present in the UK since at least 1964. This study is among the first to demonstrate the potential of eDNA metabarcoding for detection of new non-native species

    Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L.

    Get PDF
    The conservation of threatened species must be underpinned by phylogeographic knowledge. This need is epitomized by the freshwater fish Carassius carassius, which is in decline across much of its European range. Restriction site-associated DNA sequencing (RADseq) is increasingly used for such applications; however, RADseq is expensive, and limitations on sample number must be weighed against the benefit of large numbers of markers. This trade-off has previously been examined using simulation studies; however, empirical comparisons between these markers, especially in a phylogeographic context, are lacking. Here, we compare the results from microsatellites and RADseq for the phylogeography of C. carassius to test whether it is more advantageous to genotype fewer markers (microsatellites) in many samples, or many markers (SNPs) in fewer samples. These data sets, along with data from the mitochondrial cytochrome b gene, agree on broad phylogeographic patterns, showing the existence of two previously unidentified C. carassius lineages in Europe: one found throughout northern and central-eastern European drainages and a second almost exclusively confined to the Danubian catchment. These lineages have been isolated for approximately 2.15 M years and should be considered separate conservation units. RADseq recovered finer population structure and stronger patterns of IBD than microsatellites, despite including only 17.6% of samples (38% of populations and 52% of samples per population). RADseq was also used along with approximate Bayesian computation to show that the postglacial colonization routes of C. carassius differ from the general patterns of freshwater fish in Europe, likely as a result of their distinctive ecology

    Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods

    Get PDF
    Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long-term gill-net data set available in the UK. Seventy-eight 2L water samples were collected along depth profile transects, gill-net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill-net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods

    Generating and testing ecological hypotheses at the pondscape with environmental DNA metabarcoding: A case study on a threatened amphibian

    Get PDF
    Background: Environmental DNA (eDNA) metabarcoding is revolutionizing biodiversity monitoring, but has unrealized potential for ecological hypothesis generation and testing. Aims: Here, we validate this potential in a large-scale analysis of vertebrate community data generated by eDNA metabarcoding of 532 UK ponds. Materials & Methods: We test biotic associations between the threatened great crested newt (Triturus cristatus) and other vertebrates as well as abiotic factors influencing T.cristatus detection at the pondscape. Furthermore, we test the status of T.cristatus as an umbrella species for pond conservation by assessing whether vertebrate species richness is greater in ponds with T.cristatus and higher T.cristatus Habitat Suitability Index (HSI) scores. Results: Triturus cristatus detection was positively correlated with amphibian and waterfowl species richness. Specifically, T.cristatus was positively associated with smooth newt (Lissotriton vulgaris), common coot (Fulica atra), and common moorhen (Gallinula chloropus), but negatively associated with common toad (Bufo bufo). Triturus cristatus detection did not significantly decrease as fish species richness increased, but negative associations with common carp (Cyprinus carpio), three-spined stickleback (Gasterosteus aculeatus), and ninespine stickleback (Pungitius pungitius) were identified. Triturus cristatus detection was negatively correlated with mammal species richness, and T.cristatus was negatively associated with gray squirrel (Sciurus carolinensis). Triturus cristatus detection was negatively correlated with larger pond area, presence of inflow, and higher percentage of shading, but positively correlated with HSI score, supporting its application to T.cristatus survey. Vertebrate species richness was significantly higher in T.cristatus ponds and broadly increased as T.cristatus HSI scores increased. Discussion: We reaffirm reported associations (e.g., T.cristatus preference for smaller ponds) but also provide novel insights, including a negative effect of pond inflow on T.cristatus. Conclusion: Our findings demonstrate the prospects of eDNA metabarcoding for ecological hypothesis generation and testing at landscape scale, and dramatic enhancement of freshwater conservation, management, monitoring, and research

    Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds.

    Get PDF
    The sampling of environmental DNA (eDNA) coupled with cost-efficient and ever-advancing sequencing technology is propelling changes in biodiversity monitoring within aquatic ecosystems. Despite the increasing number of eDNA metabarcoding approaches, the ability to quantify species biomass and abundance in natural systems is still not fully understood. Previous studies have shown positive but sometimes weak correlations between abundance estimates from eDNA metabarcoding data and from conventional capture methods. As both methods have independent biases a lack of concordance is difficult to interpret. Here we tested whether read counts from eDNA metabarcoding provide accurate quantitative estimates of the absolute abundance of fish in holding ponds with known fish biomass and number of individuals. Environmental DNA samples were collected from two fishery ponds with high fish density and broad species diversity. In one pond, two different DNA capture strategies (on-site filtration with enclosed filters and three different preservation buffers versus lab filtration using open filters) were used to evaluate their performance in relation to fish community composition and biomass/abundance estimates. Fish species read counts were significantly correlated with both biomass and abundance, and this result, together with information on fish diversity, was repeatable when open or enclosed filters with different preservation buffers were used. This research demonstrates that eDNA metabarcoding provides accurate qualitative and quantitative information on fish communities in small ponds, and results are consistent between different methods of DNA capture. This method flexibility will be beneficial for future eDNA-based fish monitoring and their integration into fisheries management

    Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake

    Get PDF
    Environmental DNA offers great potential as a biodiversity monitoring tool. Previous work has demonstrated that eDNA metabarcoding provides reliable information for lake fish monitoring, but important questions remain about temporal and spatial repeatability, which is critical for understanding the ecology of eDNA and developing effective sampling strategies. Here, we carried out comprehensive spatial sampling of England's largest lake, Windermere, during summer and winter to 1) examine repeatability of the method, 2) compare eDNA results with contemporary gill-net survey data, 3) test the hypothesis of greater spatial structure of eDNA in summer compared to winter due to differences in water mixing between seasons, and 4) compare the effectiveness of shore and offshore sampling for species detection. We find broad consistency between results from three sampling events in terms of species detection and abundance, with eDNA detecting more species than established methods and being significantly correlated to rank abundance determined by long-term data. As predicted, spatial structure was much greater in the summer, reflecting less mixing of eDNA than in the winter. For example Arctic charr, a deep-water species, was only detected in deep, mid-lake samples in the summer, while littoral or benthic species such as minnow and stickleback were more frequently detected in shore samples. By contrast in winter, the eDNA of these species was more uniformly distributed. This has important implications for design of sampling campaigns, for example, deep-water species could be missed and littoral/benthic species over-represented by focusing exclusively on shoreline samples collected in the summer

    Terrestrial land cover shapes fish diversity in major subtropical rivers

    Get PDF
    Freshwater biodiversity is critically affected by human modifications of terrestrial land use and land cover (LULC). Yet, knowledge of the spatial extent and magnitude of LULC-aquatic biodiversity linkages is still surprisingly limited, impeding the implementation of optimal management strategies. Here, we compiled fish diversity data across a 160,000-km² subtropical river catchment in Thailand characterized by exceptional biodiversity yet intense anthropogenic alterations, and attributed fish species richness and community composition to contemporary terrestrial LULC across the catchment. We estimated a spatial range of LULC effects extending up to about 20 km upstream from sampling sites, and explained nearly 60% of the variance in the observed species richness, associated with major LULC categories including croplands, forest, and urban areas. We find that integrating both spatial range and magnitudes of LULC effects is needed to accurately predict fish species richness. Further, projected LULC changes showcase future gains and losses of fish species richness across the river network and offer a scalable basis for riverine biodiversity conservation and land management, allowing for potential mitigation of biodiversity loss in highly diverse yet data-deficient tropical to sub-tropical riverine habitats
    • …
    corecore