312 research outputs found

    Self-Excitation and Feedback Cooling of an Isolated Proton

    Full text link
    The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband-cooled to a 14 mK theoretical limit, and despite random frequency shifts (larger than those from a spin flip) that take place every time sideband cooling is applied in the gradient. The observations open a possible path towards a million-fold improved comparison of the antiproton and proton magnetic moments

    Feedback-Optimized Operations with Linear Ion Crystals

    Full text link
    We report on transport operations with linear crystals of 40Ca+ ions by applying complex electric time-dependent potentials. For their control we use the information obtained from the ions' fluorescence. We demonstrate that by means of this feedback technique, we can transport a predefined number of ions and also split and unify ion crystals. The feedback control allows for a robust scheme, compensating for experimental errors as it does not rely on a precisely known electrical modeling of the electric potentials in the ion trap beforehand. Our method allows us to generate a self-learning voltage ramp for the required process. With an experimental demonstration of a transport with more than 99.8 % success probability, this technique may facilitate the operation of a future ion based quantum processor

    Implications of surface noise for the motional coherence of trapped ions

    Full text link
    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a new constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50~μ\mum above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both, the observed heating as well as the measured dephasing, satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.Comment: (5 pages, 4 figures

    Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor

    Get PDF
    Using optical Ramsey interferometry, we precisely measure the laser-induced AC-stark shift on the S1/2S_{1/2} -- D5/2D_{5/2} "quantum bit" transition near 729 nm in a single trapped 40^{40}Ca+^+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n×2πn \times 2\pi rotation of the quantum bit.Comment: 4 pages, 4 figure

    Production of entanglement in Raman three-level systems using feedback

    Full text link
    We examine the theoretical limits of the generation of entanglement in a damped coupled ion-cavity system using jump-based feedback. Using Raman transitions to produce entanglement between ground states reduces the necessary feedback bandwidth, but does not improve the overall effect of the spontaneous emission on the final entanglement. We find that the fidelity of the resulting entanglement will be limited by the asymmetries produced by vibrations in the trap, but that the concurrence remains above 0.88 for realistic ion trap sizes.Comment: 8 pages, 8 figure

    Optimal, reliable estimation of quantum states

    Get PDF
    Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and it is the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically welcomed
    • …
    corecore