6 research outputs found

    A szívritmuszavarok és a myocardiális repolarizáció mechanizmusainak vizsgálata; antiaritmiás és proaritmiás gyógyszerhatások elemzése = Study of the mechanism of cardiac arrhythmias and repolarization, antiarrhythmic and proarrhythmic drug action

    Get PDF
    A kardiovaszkuláris betegségek és azon belül is az életet veszélyeztető kamrai és pitvari aritmiák a fő halálozási okok közé tartoznak a fejlett ipari országokban, de Magyarországon is. Ezzel összhangban, a jelen kutatási projekt is a különböző életet veszélyeztető aritmiák megelőzésének a lehetőségét, és a különböző gyógyszerek antiaritmiás és proaritmiás hatásainak a kutatását tűzte ki célul. Vizsgálataink során megállapítottuk, hogy kísérletes diabetes mellitusban mind kutyán, mind nyúlon az IKs áram és következményesen a repolarizációs rezerv csökkenése következik be amely emberben vélhetően hozzájárulhat e betegségben észlelt hirtelen szívhalál kockázat növekedéséhez. Molekuláris biológiai vizsgálatokban sikerült feltérképeznünk az emberi szívizom különféle ioncsatornáinak denzitását is. A proaritmiás gyógyszerhatások elemzésére újszerű módszert dolgoztunk ki, amelynek gyógyszerbiztonsági klinikai jelentősége és hasznosulása várható. A projekt teljesítése során további új ismereteket szereztünk a Na+/Ca2+ cseremechanizmus (NCX) repolarizációban betöltött szerepét illetően. In vivo kutya kísérletekben vizsgáltuk a peroxynitrit és gap junction csatornák szerepét az ischaemiás prekondicionálásban. Ezek az eredmények várhatóan hozzájárulnak egyrészt a szívizomzat élettani, kórélettani (aritmia mechanizmusok) ismereteinek a gyarapításában, másrészt új és biztonságos antiaritmiás terápiák kifejlesztéséhez. | Cardiovascular diseases, including life threatening ventricular and supraventricular arrhythmias, are the leading causes of mortality in industrialized countries and also in Hungary. In harmony with this, the major goal of the project was to investigate the mechanisms involved in cardiac repolarization and in antiarrhythmic and proarrhythmic drug actions. Representing important findings during the project, we established that in experimental diabetes mellitus the IKs potassium current is down-regulated resulting in the attenuation of repolarization reserve which may contribute to the increased proarrhythmic risk of diabetic patients. Using molecular biological methods we have analyzed the transmembrane ion channel densities of the human heart. To assess proarrhyhtmic drug side effects we developed a novel method which can be expected to contribute to better prediction of proarrhythmic risk in both preclinical and clinical safety pharmacology investigations. During the project, we have gained further insights regarding the role of NCX in the cardiac repolarization process. In in vivo studies we have investigated the possible role of peroxynitrite and gap junctions in ischaemic preconditioning. These results can be expected to help to better understand the physiology and pathophysiology of cardiac muscle, and arrhythmias, and should significantly contribute to the development of safer and more effective antiarrhythmic treatment modalities

    Theoretical Possibilities for the Development of Novel Antiarrhythmic Drugs

    No full text
    One possible mechanism of action of the available K-channel blocking agents used to treat arrhythmias is to selectively inhibit the HERG + MIRP channels, which carry the rapid delayed rectifier outward potassium current (I-Kr). These antiarrhythmics, like sotalol, dofetilide and ibutilide, have been classified as Class III antiarrhythmics. However, in addition to their beneficial effect, they substantially lengthen ventricular repolarization in a reverse-rate dependent manner. This latter effect, in certain situations, can result in life-threatening polymorphic ventricular tachycardia (torsades de pointes). Selective blockers (chromanol 29313, HMR-1556, L-735,821) of the KvLQT1 + minK channel, which carriy the slow delayed rectifier potassium current GO, were also considered to treat arrhythmias, including atrial fibrillation (AF). However, I-Ks activates slowly and at a more positive voltage than the plateau of the action potential, therefore it remains uncertain how inhibition of this current would result in a therapeutically meaningful repolarization lengthening. The transient outward potassium current (I-to), which flows through the Kv 4.3 and Kv 4.2 channels, is relatively large in the atrial cells, which suggests that inhibition of this current may cause substantial prolongation of repolarization predominantly in the atria. Although it was reported that some antiarrhythmic drugs (quinidine, disopyramide, flecainide, propafenone, tedisamil) inhibit I-to, no specific blockers for I-to are currently available. Similarly, no specific inhibitors for the Kir 2.1, 2.2, 2.3 channels, which carry the inward rectifier potassium current (I-kl), have been developed making difficult to judge the possible beneficial effects of such drugs in both ventricular arrhythmias and AF. Recently, a specific potassium channel (Kv 1.5 channel) has been described in human atrium, which carries the ultrarapid, delayed rectifier potassium current (I-Kur). The presence of this current has not been observed in the ventricular muscle, which raises the possibility that by specific inhibition of this channel, atrial repolarization can be lengthened without similar effect in the ventricle. Therefore, AF could be terminated and torsades de pointes arrhythmia avoided. Several compounds were reported to inhibit I-Kur (flecainide, tedisamil, perhexiline, quinidine, ambasilide, AVE 0 118), but none of them can be considered as specific for Kv 1.5 channels. Similarly to Kv 1.5 channels, acetylcholine activated potassium channels carry repolarizing current (I-KAch) in the atria and not in the ventricle during normal vagal tone and after parasympathetic activation. Specific blockers Of I-KAch can, therefore, also be a possible candidate to treat AF without imposing proarrhythmic risk on the ventricle. At present several compounds (amiodarone, dronedarone, aprindine, pirmenol, SD 3212) were shown to inhibit I-KAch, but none of them proved to be selective. Further research is needed to develop specific K-channel blockers, such as I-Kur and I-KAch inhibitors, and to establish their possible therapeutic value

    Electrophysiological effects of dronedarone (SR 33589), a noniodinated amiodarone derivative in the canine heart: comparison with amiodarone

    Get PDF
    1. The electrophysiological effects of dronedarone, a new nonionidated analogue of amiodarone were studied after chronic and acute administration in dog Purkinje fibres, papillary muscle and isolated ventricular myocytes, and compared with those of amiodarone by applying conventional microelectrode and patch-clamp techniques. 2. Chronic treatment with dronedarone (2×25 mg(−1) kg(−1) day p.o. for 4 weeks), unlike chronic administration of amiodarone (50 mg(−1) kg(−1) day p.o. for 4 weeks), did not lengthen significantly the QTc interval of the electrocardiogram or the action potential duration (APD) in papillary muscle. After chronic oral treatment with dronedarone a small, but significant use-dependent V(max) block was noticed, while after chronic amiodarone administration a strong use-dependent V(max) depression was observed. 3. Acute superfusion of dronedarone (10 μM), similar to that of amiodarone (10 μM), moderately lengthened APD in papillary muscle (at 1 Hz from 239.6±5.3 to 248.6±5.3 ms, n=13, P<0.05), but shortened it in Purkinje fibres (at 1 Hz from 309.6±11.8 to 287.1±10.8 ms, n=7, P<0.05). 4. Both dronedarone (10 μM) and amiodarone (10 μM) superfusion reduced the incidence of early and delayed afterdepolarizations evoked by 1 μM dofetilide and 0.2 μM strophantidine in Purkinje fibres. 5. In patch-clamp experiments 10 μM dronedarone markedly reduced the L-type calcium current (76.5±0.7 %, n=6, P<0.05) and the rapid component of the delayed rectifier potassium current (97±1.2 %, n=5, P<0.05) in ventricular myocytes. 6. It is concluded that after acute administration dronedarone exhibits effects on cardiac electrical activity similar to those of amiodarone, but it lacks the ‘amiodarone like' chronic electrophysiological characteristics
    corecore