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INTRODUCTION 

Atrial fibrillation in general 

Atrial fibrillation is one of the most common irregular heart rhythms. It affects more than 2.2 

million people and more than 160,000 new cases of atrial fibrillation are diagnosed in the 

United States each year. The impulse rate through the atria can range from 300 to 600 beats 

per minute. Fortunately, the atrioventricular node limits the number of impulses that go to the 

ventricles. The resulting heart beat becomes irregular, ranging from about 50 to 150 beats 

per minute1'. In 90% of the cases, atrial fibrillation is secondary to some cardiovascular or 

related chronic disease such as hypertension, coronary artery disease, valve disease, 

chronic lung disease, heart failure, chardiomyopathy, congenital heart disease, a pulmonary 

embolism, hyperthyroidism or pericarditis. It frequently evolves after open chest cardiac 

surgery. In 10% of the cases atrial fibrillation develops as a direct consequence of alcohol 

abuse, excessive caffein use, stress, intoxication from taking illicit drugs, electrolite or 

metabolic imbalances, or severe infection. In some cases there may be no identifiable cause. 

It could be that hereditary channelopathies are responsible for this type of atrial fibrillation of 

obscure origin2. The risk of atrial fibrillation increases with age, especially after sixty3, and is 

clearly dependent on the gender and ethnicity4,5. At present, atrial fibrillation is regarded as a 

dangerous disease. Because in atrial fibrillation the heart beats rapidly and irregularly, blood 

flow through the atria is not satisfactory. This makes the blood more likely to clot. If a clot is 

pumped out of the heart it can travel to the brain, resulting in a stroke6,7. People with atrial 

fibrillation are 5 to 7 times more likely to have a stroke than the average person. A clot can 

also travel to other organs (kidneys, heart, intestines) and damage them. In 20 to 30% of 

cases atrial fibrillation impairs the pumping ability of the heart, precipitating or inducing heart 

failure. Chronic atrial fibrillation is associated with an increased risk of death3. 

Chronic atrial fibrillation is known to be accompanied by many changes both at the 

tissue and cardiomyocyte level. From an electrophysiological point of view the most typical 

changes are those associated with the restitutional properties and form of the action 

potential. Novel pharmacological interventions suitable for long-term medication of the 

disease, as well can not be contrived without a better understanding of the processes behind 

electrophysiological mechanisms. 

The normal atrial action potential 

The "spike-and-dome" shape of the normal human atrial trabecular action potential can be 

characterized by a steep early repolarization (2-5 ms APD20), a low plateau potential (-25 -30 

mV) and a slow late depolarization (300 - 400 ms APD go)8. The speed of the fast 
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depolarization (Vmax) of the atrial action potential is comparable to the ventricular action 

potential, and is generally between 190 and 400 v/s9'73,83,85. 

AMP 

FIGURE 1 

The normal human action potenial and its electrophysiological parameters 

The characteristic parameters of atrial action potentials are the same for all excitable tissues. 

They can be characterized by a resting potential (RMP), amplitude of the action potential 

(AMP) and the action potential duration at different repolarization levels (APD10_9o). In order to 

characterize the "spike-and-dome" shape of action potentials, the relative or absolute values 

of notch and plateau amplitudes are used. Taking into account the fact that the shape of 

atrial action potentials may vary considerably owing to the effects of physiological 

pathophysiological processes and drugs, and also that the shape of action potentials and the 

liability of atrial tissue to fibrillate are strongly connected, the proportionality between APD2o 

and APDso ( TRIANGULARITY ) is also a useful parameter10 ( Fig 1 ) for classifying the 

action potential. 

Main ionic currents and their role in electrical activity of the atrial myocardium 

The form of the atrial action potential arises from a complex interplay between different ionic 

currents. Early fast depolarization is brought about by fast Na+ channels11 (lNa), as is the case 

in every excitable tissue. The contraction is triggered by Ca2+ entering the cells through the 

slow Ca2+ channels12 (ICaL). When determining the intracellular Ca2+ contents ([Ca2+]0 of 

intracellular Ca2+ stores other Ca2+ channels are also important. These are the T-type Ca2+ 

channel (ICaT) operating in the resting potential range13, the tetrodotoxine-sensitive Ca2+ 
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channel14 (ICa-rrx)- and as some yet undetermined Ca2+ channels that carry the so-called 

"capacitive" Ca2+ currents15. It is known that there are two extrusion mechanisms for 

removing Ca2+ from the cell. These are the Na+-Ca2+ exchanger16 (NaCaex) which uses the 

electrochemical gradient of Na+ and the sarcolemmal Ca2+ pump17 (SRCapmp). As to what 

extent these two mechanisms are responsible for maintaining normal intracellular Ca2+ 

concentrations under various physiological and pathophysiological conditions is still only 

partially understood. The direction of Na+-Ca2+ exchange varies during the action potential 

phases. At potentials corresponding to the plateau of the action potential Na+ is extruded 

from the cell and Ca2+ is transported into it. The Na+-Ca2+ exchanger reaches its maximal 

activity around the peak of the plateau of the atrial action potential, thereby influencing the 

time course of repolarization18. Early fast repolarization is brought about by a transient 

outward K+ current19,20,21 (lt0) and by the atrium-specific ultrarapid delayed rectifying K+ 

current22, (IKur). 
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FIGURE 2 

Ionic currents and the gene correlates of the pore forming and regulatory subunits in 
the human atrial myocardium23'24,32 

In atrial tabecular muscles, IKur is one of the most important repolarizing currents. Atrial 

tabecular muscle contains conventional slow and fast K+ channels similar to other myocardial 

muscles that can be activated with normal action potential configurations, as well. The most 

important of them are the rapid and slow delayed rectifier K+ currents ( IKS and Ikv ), which 

become activated during the action potential plateau25,26. If a repolarization level of 50-60 % 

is exceeded the inward rectifier K+ channel ( If^ ) is activated and the outward current flowing 
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through this channel further assists the membrane to return to the resting potential27,28. The 

activity of inward rectifier K+ channels are not important in overshooting or in the plateau 

domain of the action potentials. The shift in ionic concentrations through action potentials are 

restored by the Na+-K+ pump (INaKpmp). The pump is electrogenic and takes part in the final 

shaping of the action potentials29. Atrial tissue contains other ionic channels too, the two 

most important being the acethycholine-sensitive ( IKAch ) and ATP-sensitive K+ channels ( 

IKATP )30,31- During the plateau phase a sustained outward current is also activated ( lp ). 

However, this macroscopic current is the result of more than one primary channel function 

with different kinetics and varying ion-specificity32. In the tissue of the right atrium under 

normal physiological conditions a channel responsible for the pacemaker current ( If) can 

also be observed33. The membrane density of this channel is not yet known. To complicate 

the picture it should be noted that the presence of ionic channels or channel proteins does 

not necessarily mean that these channels are functional. Most likely each channel can be 

coupled to one or more regulatory protein. A given regulatory protein can modify the 

behaviour of more ionic channels. Ionic channels can be coupled to structural proteins 

available intra- or extracellularly, which can also modify their kinetic parameters32 ( Fig 2 ). In 

theory one could conceive of a situation where the results of measurements of currents may 

be the same although the detailed composition of channels and regulatory proteins are quite 

different. The variation of the channel composition and the up- and down-regulation of some 

channels can produce significant changes in the shape of the action potentials (electrical 

remodelling) and, as a consequence, changes in the restitution parameters of the action 

potentials. The unfavourable changes of the restitution parameters of the action potentials 

are considered today to be the most important factors in the onset and continuation of atrial 

fibrillation34,35,36. 

Electrical remodelling and its importance in the perpetuation of atrial fibrillation 

The elevated atrial frequency may be a consequence of automacy or reentry which 

eventually leads to the perpetuation of atrial tachycardy, to atrial flutter and to chronic atrial 

fibrillation37,38. It seems that the regularity and organization of electrical activity, by following 

the tachycardy-atrial flutter-atrial fibrillation sequence39, gradually shifts from temporally 

organized patterns (sinus-rhythm and tachycardy) to spatially-organized patterns (atrial flutter 

and chronic atrial fibrillation). The key characteristic of atrial fibrillation is the appearance of 

spatial independence and multiplication of time scales40. Whatever the reason for it the 

consequence of rhythm enhancement will undoubtedly be a steady increase in intracellular 

Ca2* concentrations17,18,41,42 ( Fig 3 ). 
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ENHANCED AUTOMATICITY REENTRY 

Enhanced sinus node act ivi ty AV-nodal reentry 
There are 2 distinct atrial imputs to the A V nodgwstenorly via the crista terminalis and anteriorly 

via the interatrial septum! mpulae propagation to the His bundle depends p u t on the relative 
liming of the anterior and postenor septal activation imputs Rapid ly f i r ing foci in the superior pulmonary veins 

can initiate AF in susceptible patients 

AV-nodal reentry 
There are 2 distinct atrial imputs to the A V nodgwstenorly via the crista terminalis and anteriorly 

via the interatrial septum! mpulae propagation to the His bundle depends p u t on the relative 
liming of the anterior and postenor septal activation imputs 

Accessory pa thways 
between the atnum and the ventricle 
(Wolf-Paricinson-Whitc sy ndrom) 

A b n o r m a l impulse genera t ion 
in sperior vena cava and coronary sinus 

Accessory pa thways 
between the atnum and the ventricle 
(Wolf-Paricinson-Whitc sy ndrom) 

abnormal impulse generation in the atria itself resulting from transient or sustained 

mechanical stress 
( valve disease, mitral stenose ) 

M O R E F R E Q U E N T A C T I V A T I O N 

TACHYCARDIA 

L R 
more organized than AF 
with saw-tooth pattern of 
regular atria! activation 

Circulation 21*11. HW 2118-2150 

time-organizecf^yj; 
•-•-•i 

FIBRILLATION 
spatially organized: v 

T y p e I AF: single wavefront meandering accross the right atr ium, 
T y p e II AF: 1-2 wave fronts and 
T y p e I I I AF: multiple wave fronts ( wavelets ) propagating in different directions. 

FIGURE 3 

More frequent activation of atrial myocytes leads to an increase in the overall 
intracellular Ca2+ concentration 

Alongside these changes, the atrial action potential becomes triangular in form and the 

mechanical activity gets reduced. It is well known that in fibrillating human myocardium the 

density of L-type Ca2+ channels is low. Data on the alterations of density of fast Na+ channels 

are contradictory. In fibrillating atrial myocardium the density of transient outward K+ 

channels is also low. The densities of the IKAch and IKATP channels, as well as the amount of 

calsequestrin in the sarcoplasmic reticulum are down-regulated too. However, the lf density 

in the sarcolemma and number of IP3-sensitive Ca2+-release receptors in intracellular 

reticular membranes are upregulated. The densities of other repolarizing K* channels are 

also altered by chronic atrial fibrillation. Moreover IKur, IKS and IKr are unchanged or down-

regulated, while IKT is either elevated or decreased41,43 ( Fig 4 ). 
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ELECTRICAL REMODELLING 

S p i k e & D o m e 
action potential shape 

Tr iangu lar 
action potential shape 

NaCaEx 
SR-Ca ^ 
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C a l s e q u e s t r i n ^ I 
CONTRACTILE 

FUNCTION 

FIGURE 4 

Changes in densities of ionic channels and Ca2+ handling proteins and the consequences 
on the electrical and mechanical activity in chronic atrial fibrillation 

Combining the results of experiments on human preparations and animal fibrillation models, 

what seems to be an overall response of the mammalian myocardium to the atrial fibrillation 

is the down-regulation of Ca2+ channels together with that of repolarizing K+ currents 

operating in voltage domains of these Ca2+-channels44 ( Fig 5 ). It is worth noting, that there 

is no perfect experimental model for atrial fibrillation. This is partly because distinct species 

expressing though similar channel composition may utilize considerably different 

mechanisms to minimize detrimental cellular effects of the atrial fibrillation. Diverse changes 

in the IKS, IKr and IKT densities may reflect the fact that "sterile" atrial fibrillation in humans is 

relatively rare and atrial fibrillation is more often a consequence of other disorders45-46. To 

make a precise distinction between original and secondary processes in this respect is still 

quite impossible. 
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Human Atrial Fibrillation Animal Models 
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FIGURE 5 

Remodelling in human atrial fibrillation and animal fibrillation models 

Diversity of the trabecular action potential forms 

Our results obtained from analyzing the incidence of the different action potential forms in 

isolated right atrial preparations from "healthy" subjects or from patients with atrial fibrillation 

also highlight the importance of other pathological processes which may trigger the disease. 

The frequency of triangular action potential forms was 24% in atrial trabeculae from "non-

fibrillating" patients. In atrial fibrillation the triangular action potential form is thought to be 

unexceptionally common. In our current experiments, however, the typical triangular shape 

was characteristic only in 69% of diseased patients ( Fig 6 ). This means that atrial fibrillation 

induces remodelling (i.e changes in densities of ionic channels and in the shape of the atrial 

action potentials), but remodelling can occur for other reasons too45,46. In the latter case atrial 

fibrillation is a consequence rather than a cause. The seemingly attractive statement "atrial 

fibrillation begets atrial fibrillation"47 should perhaps be amended to "remodelling begets atrial 

fibrillation - and vice versa - atrial fibrillation begets remodelling". No doubt the mechanism 

for atrial fibrillation is a circulus vitiosus which has two entry points. 
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SR 

SR AF 100-, 
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FIGURE 6 

The occurence of fibrillating (triangular) action potential forms in human right atrial 
trabeculae obtained from patients either with sinus-rhythm ( SR ) or with diagnosed 

atrial fibrillation ( AF ) 

Many medications for the treatment of atrial fibrillation are available at present48,49,50. These 

drugs include quinidine, procainamide, disopyramine, propafenone, flecainide, sotalol51, 

dofetilide, ibutilide52, tedisamil, azimilide53,54 and amiodarone55,56 (Classl and 3 

antiarrhythmics according to Vaughan-Williams57,58,59), beta-blockers such as carvediol or 

propranolol (Class 2) and non-dihydropyridine Ca-antagonists like verapamil60,61 or 

diltiazem62 (Class 4) or digoxin. The principal drawback about them all is that they are not 

organ specific enough (they also influence the ventricular functions). Their effectiveness is 

unsatisfactory in practice (they are effective only in 30-60% of the cases and this 

effectiveness may even decrease with time; most drugs have a 70% failure rate after one 

year) and many of them possess potentially serious side effects. Over the past decade 

various studies have demonstrated that long-lasting preventive administrations of Classl 

antiarrhythmics should be avoided in patients who had heart failure, cardiac ischaemia or a 

previous myocardial infarction because of the enhanced propensity of proarrhythmia63, which 

may increase the mortality rate. Pure Class 3 drugs like sotalol64, ibutilide and dofetilide also 

Problems with drugs presently used in the treatment of atrial fibrillation 
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share this proarrhythmic feature; they show a high rate of incidence of torsade de pointes 

(reported values in studies vary from 1 to 4.8% for the Class 3 antiarrhythmics and from 2 to 

8.8% for quinidine)65. 

IKM, as a potential target in the treatment of atrial fibrillation 

The discovery of IKur in the early 90s66,67 gave a new impetus to the development of atrial 

specific antiarrhythmics. It was shown that this channel could selectively be blocked by 

micromolar 4-aminopyridine (4-AP) concentrations26,68. Although earlier experiments on the 

4-AP effects in multicellular preparations could not demonstrate unambigous APD 

lengthening69,70 ( a noticeable sign of antiarrhythmic action of selective K+ channel blockers 

), leading researchers have since begun to hold the view that 4-AP does indeed prolong the 

APD in both healthy and remodelled atrial myocytes71 and the application of 4-AP or similar 

compounds should be the breakthrough in the treatment or prevention of atrial fibrillation of 

any type. 

AIM OF THE PRESENT STUDY 

The aim of the present study was to examine whether the effects of the 4-AP caused an IKur 

block on the action potential parameters in right atrial preparations obtained from healthy 

individuals and also from patients with chronic atrial fibrillation going back 3 months or more. 

Keeping in mind, that a preponderant number of the subjects get the first incidence of atrial 

fibrillation at the predominance of the parasympathetic tone, 4-AP experiments with complete 

muscarinergic (M2) receptor activation were also considered. The action potential restitution 

and modification by antiarrithmics is known to play a crucial role both in the pathomechanism 

and the antiarrhythmic therapy of rhythm disturbances. Hence we also intended to 

characterize 4-AP effects on the action potential restitution in atrial preparations of either 

type ( i.e. "healthy" or "sinus-rhythm" and "fibrillating"). In order to verify the 4-AP-induced 

action potential effects and also to explore the IKur block-induced secondary changes in 

other important current entities of the atrial myocardium, we intended to develop an action 

potential model. It was also considered that, by revealing the exact interplay of ionic currents 

during the atrial action potential, new antiarrhythmic approaches might also be suggested. 

The mechanism of action of 4-AP was also compared with those of lidocaine, detajmium83 

and tedisamil72 8S. 



12 

METHODS 
Human atrial preparations 

Right atrial appendages were obtained from 49 patients with sinus-rhythm and 16 patients 

with chronic atrial fibrillation. There was a slight differences in sex, underlying heart disease 

and left atrial diameter between the two groups. Patients with atrial fibrillation were more 

frequently medicated with digitalis, Ca-antagonists of non-dyhydropyridine type and nitrates 

than sinus rhythm patients. However, verifying the differences statistically proved impossible 

in practice because of the low number of cases. The existence of such differences is well 

known and has also been demonstrated by us in other experiments73. 

Other types of cardiac preparations 

In experiments for analyzing the effects of drugs on cardiac action potentials of other 

species, canine and rabbit preparations were also used. The concerning methodological 

details are published elsewhere83,85,87. 

Action potential recordings 

About 25 min after the appendages had been removed the atrial trabecuiae were prepared. 

Then the trabecuiae were mounted onto the bottom of an organ bath perfused with 

oxigenated Tyrode's solution having a molar composition like that published elsewhere73,87. 

Before starting an experiment, the preparations were left to stabilize for 40 min. During this 

adaptation period and also throughout the whole experiment, the preparations were 

subjected to rectangular pulse stimuli at a driving rate of 1Hz. Transmebrane potentials were 

recorded via microelectrode impalement. When the preparations failed to function and action 

potentials could not be evoked even when exceptionally high stimulus intensities were 

applied, 1 pM carbachol was added to the bath. If the electrical activity was restored and 

carbachol could be removed without worsening of the transmebrane potential parameters ( 

i.e. changes remained within 1% for 10 min after a 30 min long washout) the preparations 

were regarded as normal. Otherwise they were rejected. 

Action potential restitution 

The action potential restitution was established by using extra impulses at 1Hz basic cycle 

length. Extra impulses were delivered to the preparation after every tenth regular beat. The 

coupling time of extra impulses was altematedly varied in a 3000 ms range following the 

effective refractory period. 



13 

Transmembrane potential parameters followed 

In addition to the usual parameters ( the resting potential: RMP, action potential amplitude: 

AMP, maximum rate of depolarization: Vmax, action potential durations at different percentage 

values of repolarization: APDX) parameters for the the action potential notch ( NOTCH ) and 

the action potential plateau ( PLATEAU ) were introduced. The action potential form was 

characterized by a triangularity parameter ( TRIANGULARITY ) calculated as the natural 

logarithm of the weighted APD2o/APD80 ratio. ( Fig 1 ) Numeric values of the relevant 

parameters were obtained automatically from signals obtained via a program written by the 

author83,87. 

Drugs applied in this study 

In the present work, detajmium, tedisamil, 4-aminopyridine (4-AP), carbachol and E-4031 

were used. Small amounts of stock solutions were added directly to the organ bath. 

Concentration-response relationships were determined by applying (4-AP) cumulatively. In 

the case of E-4031, the solvent was dimethyl-sulfoxide (DMSO). To exclude unwanted 

solvent effects, single experiments were also carried out solely with DMSO. In these 

experiments DMSO did not alter the transmebrane potential when its volume-concentration 

remained below 0.2%. This DMSO concentration was never exceeded in our experiments. 

Incubation with each set 4-AP concentration lasted for 20-40 min. Lidocaine and carbachol 

effects were left to evolve for 15-30 min. The exposure to detajmium, tedisamil or E-4031 

lasted for 30-50 min. 

Statistical analysis 

Drug effects were statistically verified with Student's t test for paired observations. In the 

case of the restitution curves one-way ANOVA and Bonferroni post tests were used for 

statistical evaluations. The results with E-4031 were statistically analyzed with one-way 

ANOVA and Dunn's test. The diversity of action potential forms in sinus rhythm and atrial 

fibrillation was statistically verified by applying the G-test. All the data obtained 

experimentally are expressed as means ±SE. Changes were regarded as significant when 

p<0.05. 

Computer simulation 

The human atrial action potential model was based on the research work of 

others71-74-75-76-77-78-79-80-81. It was written in the PASCAL language and was run in DOS mode 

on an 800 MHz IBM-clone PC with Pentium II processor. The maximum conductance values 

of ionic currents were taken from the literature. In order to get realistic action atrial potential 

forms most of them had to be readjusted. For numerical integration of the mebrane potential 

change caused by the instantaneous transmembrane currents a modified Euler-method was 



14 

applied s. Depending on the estimated error, the integration step was varied automatically 

between 0.001 and 1ms. Before recording a simulated action potential, ionic concentrations 

in different compartments were left to stabilize for 200 cycles. ( APPENDIX: Fig 23, TABLE 

6-8 ). All simulations had a steady-state driving rate of 1Hz82. 

RESULTS 

4-aminopyridine concentration-respons curves at 1Hz rate in SR-preparations 

In "healthy" atrial appendage preparations stimulated at a driving rate of 1Hz, 4-AP induced 

concentration dependent changes in action potential parameters, especially in those for the 

plateau phase and action potential durations at repolarization levels below 50%. Increasing 

4-AP concentrations ranging from 0.3 to 100 pM elevated the height of the action potential 

plateau ( control: -22.6 ±0.8 mV, 100pM 4AP: -2.8 ±1.9 mV, n=5 ) with an EC50 of 13pM. 

Besides the plateau elevation, the notch potential was moved to more positive values ( 

control: -26.1 ±1.2 mV, 100 pM 4AP: -6.3 ±1.1 mV, EC50: 16 pM ) and the APD90 value was 

shortened ( control: 293.7±15.1 ms, 100pM 4AP: 243.2±11.8 ms, EC50: 7.3pM ). Even when 

100 pM or higher 4-AP concentrations have been applied, the effects could always be 

reversed in 30 min after the removal of the drug. ( Fig 7 ). The lowest 4-AP concentrations 

inducing statistically verifiable plateau elevation seemed to be between 3 and 10 pM. 

A max (plateau) 
" m i n ( n o t c t 1 ) 

—i—1 1—i 1 1 1 1 1 1— 
c - 7 - 6 - 5 - 4 - 3 -2 -1 

log [4-AP, M ] 

FIGURE 7 
Human right atrial action potentials as affected by increasing 4-aminopyridine 

concentrations at 1 Hz steady-state driving rate 
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The effects of low 4-aminopyridine concentrations on the action potential parameters 
in right atrial trabecules obtained from patients with sinus rhythm 

5pM of 4-AP significantly elevated the notch and plateau potentials from -31.7 ±4 to -21.8 

±4.8 and from -21.0 ±2.5 to -6.5 ±2.5 mV ( n=16 ). At the same time, the APD80 and APDgo 

values were significantly shortened by 9 and 15% respectively ( APD80: 290.8 ±6.2 vs. 264 

±8.0 ms [p < 0.010] and APD90: 413.6 ±10.4 vs. 350.0 ±10.1 ms [p < 0.001]). Vmax, the action 

potential amplitude and APDs below 20% of repolarization did not change significantly. In the 

presence of 5 pM of 4-AP the sinus rhythm action potentials became noticeably more 

triangular ( TABLE 1, Fig 8A ). 

Effect of 5-pM 4-amin 
in human righ: 

opyridine on t 
atrial appenc 

TABLE 1 
he action potential parameters at a drivin 
ages obtained from patients with sinus-r 

g rate of 1 Hz 
hythm 

RMP 
(mV) 

AMP 
(mV) 

vmax 
(V/s) 

APD20 

( ms ) 
APD80 

( ms ) 
APD90 
(ms) 

NOTCH 
(mV) 

PLATEAU 
(mV) TRIANGULARITY RMP 

(mV) 
AMP 
(mV) 

vmax 
(V/s) 

APD20 

( ms ) 
APD80 

( ms ) 
APD90 
(ms) 

abs amp abs amp 
TRIANGULARITY 

control -75.2 
±0.8 

100.9 
±2.1 

280.7 
±15.7 

4.9 
±1.6 

290.8 
±6.2 

413.6 
±10.4 

-31.7 
±4.0 

43.5 
±4.3 

-21.0 
±2.5 

54.2 
±2.9 

-3.2 
±0.22 

+ 5UM 
4-AP 

-74.4 
±1.0 A 

100.0 
±2.3 

267.3 
±15.7 

12.1 
±4.8 • 

264.1 
±8.0 • 

350.0 
±10.1 • 

-21.8 
±4.8 • 

52.7 
±5.3 • 

-6.4 
±2.5 • 

68.0 
±3.1 • 

-2.4 
±0.31 • 

mens±SE, n = 15, p< 0.05, abs: absolute values, amp: amplitude from RMP 

4 0 0 -

3 0 0 -
E, 
£ 200 
< 

100-

0 

3 Control 
• 4-AP (5 pM) 

A P D „ APD 

4 0 0 

« 3 0 0 

200-

1 0 0 -

S R {n = 15) 

APD20 APDGO 

AF (n = 6) 

FIGURE 8 

Human right atrial action potentials in sinus rhythm ( A ) and atrial fibrillation ( B ) as 
affected by 5 pM of 4-aminopyridine at a steady-state driving rate of 1Hz 
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The effects of 4-aminopyridine concentrations in atrial fibrillation 

In trabeculae taken from patients with chronic atrial fibrillation, the action potential plateau 

runs routinely above 0 mV and the notch potential can not clearly be defined or its position in 

repolarization can vary quite considerably. 5 pM of 4-AP was able to further elevate this 

increased fibrillating action potential plateau by 15% ( control: 0.36 ±3.3 mV, 4-AP: 12.4 ±2.5 

mV; n =6 [ p< 0.01 ]). The increase in the notch amplitude caused by the drug was also 

detectable but its true extent may be somewhat overestimated because the determination of 

this parameter is imprecise with highly triangular action potential forms. In contrast with 

sinus-rhythm preparations, the APD80 and APD90 values were lengthened by 5pM of 4-AP in 

"fibrillating" trabeculae (from 233.8 ±12.0 to 258.5 ±10.9 ms [p<0.01] and from 300.4 ±16.3 

to 320.2 ±13.3 ms [p<0.01], respectively ). The numerical value of the 4-AP-induced increase 

in the APD2o value ( 123% ) could be solely attributed to drug-effects on the height of the 

action potential plateau. Neither Vm3x nor the resting potential and action potential amplitude 

were changed by 5 pM 4-AP in tabeculae from patients with atrial fibrillation. ( Fig 8B, 

TABLE 2 ) 

TABLE 2 
Effect of 5-pM 4-aminopyridine on the action potential parameters 

in human right atrial appendages obtained from patients with chronic atrial fibrillation 
at driving rate of 1Hz 

RMP 
( M V ) 

AMP 
( M V ) 

VMAX 
( V / S ) 

A P D 2 0 
( M S ) 

APDso 
( M S ) 

APD90 
(ms) 

NOTCH 
(mV) 

PLATEAU 
(mV) TRIANGULARITY 

abs amp abs amp 
control -79.7 106.5 291.0 34.8 233.8 300.4 -52.8 26.8 0.4 80.0 -0.71 

±2.7 ±3.4 ±28.2 ±8.6 ±12.0 ±16.3 ±11.9 ±12.0 ±3.3 ±2.4 ±0.28 
+ 5pM -79.3 106.8 291.6 77.7 258.5 320.2 -23.9 55.4 12.4 91.8 0.18 
4-AP ±2.6 ±2.3 ±20.3 ±5.0 ±10.9 ±13.3 ±15.1 ±15.8 ±2.5 ±1.6 ±0.05 

• • • • • • • • 

mens±SE, n = 6, ~k: p < 0.05, abs: absolute values, amp: amplitude from RMP 

Changes in ionic currents secondary to the selective IK,^ inhibition in sinus rhythm 
and atrial fibrillation as revealed by the action potential simulation 

The shape and potential domain of the "healthy" right atrial action potential plateau were 

dependent on the activity of the ICaL, IKur and IKr currents. The intensity of lt0 reaches its 

highest value (4.8pA/pF) at 3.1 ms after the onset of the action potential and thereafter 

decreased quite rapidly. At the time associated with the action potential notch, the intensity of 

I to was still 0.45 pA/pF. At the climax of the action potential dome (i.e. at 72.5 ms), though, 

practically no current passed through this type of K+ channel. The IKur current becomes 

activated with kinetics comparable to that of lt0, but its inactivation process is absent (or to be 

more precise it is negligibly slow ). Consequently, during most of the repolarization phase, 
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IKur acts rather like a simple voltage-dependent current. As the repolarization process 

proceeds, IKur becomes gradually deactivated and at voltages below -55 mV the IK^ current 

no longer flows. In our action potential simulations this voltage limit was reached at APDs 

longer than 175 ms. Owing to the rapid voltage drop during the fast repolarization phase of 

the action potential, the evolution of the IKr activation slackens. In sinus-rhythm, the IKr 

intensity reaches its maximum ( 0.8 pA/pF ) at 121 ms, that is by 43 ms after the top of the 

dome. During the late repolarization of the action potential, IKr activity gradually diminishes. 

IKS gets activated more slowly and at a more positive voltage than IKr. This more positive 

activation voltages can not be reached in case of sinus rhythm action potentials. However, 

the IKS activity might be positively regulated not only by the membrane voltage but also by 

[ C a 2 + ] j . Depolarized voltages insufficient for activating IKS alone and increasing intracellular 

[Ca2+]i together do activate IKS even in normal sinus-rhythm action potentials (provided that 

IKS is expressed at a reasonably high density in human atrial myocytes). In our simulations, 

the maximum IKS activity was 0.23 pA/pF and reached its peak after 127 ms. Under control 

conditions, the time course of ICaL is biphasic with a small transient peak at 10 ms with a 

slower evolving but greater secondary current ampitude (-3.2 pA/pF) at 68 ms. This biphasic 

Ca2+ entry through ICaL makes the intracellular Ca2+ transient slightly biphasic, as well. The 

Ca2+ transient increases relatively fast and reaches a 23 ms long plateau with a [Ca2*]; of 1.2 

pM. During the action potential dome phase, the Ca2+ transient increases further until a 

maximum of 1.5 pM at 71 ms is reached. [Ca2+]i then returns to its normal systolic level ( 0.2 

pM ). In our action potential model the Ca2+ transient persists 150-200 ms longer then the 

action potential. ( Fig 9A). 
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FIGURE 9 

The effects of IKur inhibition on other ionic currents and on the [Ca2+]j transient 
in "healthy" human atrial myocytes ( computer simulation ) 

The sarcolemmal Ca2+ pump was not incorporated in our model, the removal of the surplus 

myoplasmic [Ca2+] resides solely in activities of the Na+-Ca2+ exchange and the reticular Ca2+ 

pump. Ignoring the very top of the atrial action potential, the exchanger current flows inwardly 

with a maximum of-4.4 pA/pF at 200 ms. When IKur is blocked, inward currents through ICaL 

and INaCaEx become unbalanced and notch and plateau potentials get more depolarized. 

The more positive the plateau and notch potentials are, the more IKr gets activated and ICaL 

and INaCaex currrents become couterbalanced again. In this way a 90% inhibition of IKur 

causes an 80% increase in IKr activity. This more intense IKr repolarizes the membrane more 

effectively and the resulting APD90 value becomes even shorter than it was with unblocked 

IKur (in simulation: 220 ms vs. 260 ms as control). An equally significant increase in IKS 

activity secondary to a 90% IKur block was not be seen. Both L-type Ca2+ current and the 

amplitude and time-integral of the Ca2+ transient get, however, markedly increased ( by 35 

and 12 and 13 %, respectively ). Owing to the changes in current activities and Ca2+ flows, 

the maximum dome potential is reached earlier too (51 vs. 69 ms as control). ( Fig 9B, Fig10 

)• 
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FIGURE 10 

The effect of selective inhibition of IKur on the action potential in sinus-rhythm and 
atrial fibrillation at a steady-state stimulation of 1Hz ( computer simulation ) 

In the the model for fibrillating atrial myocyte reduced lt0, IKur, IKS, IKr and ICaL currents were 

incorporated with maximum conductances values of 0.01, 0.003, 0.2, 0.025 and 0.005 

mS/pF, respectively (APPENDIX, TABLE 7). This resulted in a realistic "fibrillating" action 

potential form with 21 ms APD2o, 155 ms APD90 and an average plateau level of -9.5 mV. 

Here a 90% inhibition of IKur also brought about a 3% increase in the amplitude of L-type 

Ca2+ current, a 22% enhancement of the [Ca2+ I transient, and also forced the Na+-Ca2+ 

exchange to carry more inward current. These effects tended to make the APD longer. The 

increase in IKr activity, resulting from the IKur block-induced depolarization of the action 

potential plateau from -9.5 to -2.8 mV, was 53%. This augmentation, however, was 

insufficient to neutralize the increase in intensity of inward currents so a net APD 

prolongation appeared. When "fibrillating" action potentials with reduced IKur activity were 

simulated, APD20 and APD90 values rose by 98% and 6%, respectively ( Fig 9B, Fig 10 ). 

As the results obtained with our human action potential model revealed, the APD 

effects of an IKur block may be strongly modulated by the activity of other delayed rectifiers, 

especially by the IKr one. 
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Modulation of 4-aminopyridine effects by restraining the IKr activity 

In a sinus rhythm preparation, the selective IKr blocker E-4031 though seemed to increase 

APD80 and APD90 values, but the changes did not prove to be significant ( 281.0 ±37.7 ms 

APD80 and 412.1 ±42.8 ms APD90 in the presence of 1pM E-4031 vs. APD80 and APD90 

values of 252.2 ±27.5 and 362.3 ±29.5 ms as controls, respectively; n = 5 ). 

TABLE 3 
The effect of E-4031 on the 4-aminopyridine-induced action potential changes 

at a driving rate of 1Hz in human right atrial appendages obtained from patients 
with sinus-rhythm 

RMP 
( m V ) 

AMP 
( m V ) 

VMAX 
( V / s ) 

APD20 

( m s ) 
APD80 

( m s ) 
APDGO 
( m s ) 

NOTCH 
( m V ) 

PLATEAU 
( m V ) TRIANGULARITY 

RMP 
( m V ) 

AMP 
( m V ) 

VMAX 
( V / s ) 

APD20 

( m s ) 
APD80 

( m s ) 
APDGO 
( m s ) 

abs amp abs amp 
TRIANGULARITY 

control -72.4 
±1.1 

97.3 
±3.3 

280.4 
±30.2 

2.1 
±0.5 

252.2 
±27.5 

362.3 
±29.5 

-29.8 
±1.7 

42.6 
±2.6 

-26.5 
±1.8 

45.8 
±2.3 

-3.47 
±0.22 

+1 p M 
E-4031 

-73.3 
±2.1 

96.5 
±3.9 

276.5 
±27.1 

1.9 
±0.3 

281.0 
±37.7 

412.1 
±42.8 

-30.7 
±1.4 

42.6 
±2.7 

-28.7 
±1.5 

44.7 
±3.1 

-3.63 
±0.20 

+ 5 p M 
4-AP 

-72.1 
±1.6 

90.9 
±6.1 

235.5 
±36.7 • 

4.0 
±1.4 
§ 

358.5 
±28.8 • 

483.4 
±32.6 • 

-18.9 
±3.4 
§ 

53.2 
±3.2 
§ 

-14.4 
±2.7 
§ 

57.7 
±2.9 
§ 

-2.83 
±0.78 
§ 

mens±SE, n = 5, §: p < 0.05, E-4031 vs. 4-AP; p < 0.05, control vs. E-4031+4-AP, abs: absolute values, 
amp: amplitude from RMP. Statistical analysis: ANOVA, Dunn's multiple comparison test. 

Still, the application of 5pM 4-AP in the presence of E-4031 resulted in significant APD 

lengthenings both at 80 and 90% repolarization levels, when compared to controls ( APDSo 

was increased to 358.5 ±28.8 and APD90 to 483.4 ±32.6 ms, [p < 0.01]). In the presence of 

E-4031 alone, there was no significant change on the APD2o value. Although having been 

equilibrated with 1 pM E-4031 for 30 min, E-4031-induced changes in notch or plateau 

potentials were not observed. However, both of them became more depolarized when 5 pM 

4-AP was also applied in the presence of E-4031 ( -18.9 ±3.4 and -14.4 ±2.7 mV vs. -30.7 

±1.4 [ p<0.01] and -28.7 ±1.5 mV [p<0.05] notch and plateau potentials for E-4031+4-AP and 

for E-4031 alone, respectively ). In the presence of E-4031 4-AP legthened APD2o as well 

(control: 2.1 ±0.5 vs. E-4031 +4-AP: 4.0 ±1.4 ms [p< 0.05]) ( TABLE 3, Fig 11 ). 

The influence of IKr and IK; intensities on 4-aminopyridine effects as revealed by the 
action potential simulation 

In action potential simulations, the effects of IKur blocking on the APD were dependent on the 

intensities of the IKr and IKS currents. A 75% reduction in IKr conductance resulted in 

simulated action potentials with an APD90 of 313 ms in steady-state. When, in addition, IKur 

was reduced by 90% the action potential plateau was elevated from -14.5 to 2.3 mV. 
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FIGURE 11 

The effect of selective IKur inhibition on the action potential under control conditions 
(A,B) and after IKr had been blocked by lpM E-4031 (C) in "healthy" human right 

atrial myocardium at a steady-state driving rate of 1Hz 

The duration of simulated "sinus-rhythm" action potentials with weak IKr, however, did not 

become shorter after reducing the IKur conductance by 90%. ( control APD90: 315 ms vs. 

APD9o with blocked IKur: 320 ms ). 

Under control conditions (i.e. with strong IKr) simulated "sinus-rhythm" action potential 

forms proved to be insensitive to changes in the IKS intensity (a 50% reduction in maximum 

IKS conductance produced no noticeable change in APD). However, the additional IKur block 

always resulted in APD prolongations in simulations with reduced IKr and IKS intensities. In 

such cases a 90% reduction in maximum IKur conductance lengthened the APDgo from 325 to 

358 ms. 

In the presence of reduced delayed rectifier intensities, the additional IKur block 

elevated the voltage and prolonged the duration of the action potential plateau (-15.4 mV and 

125 ms with blocked IKr vs. -3.0 mV and 158 ms with blocked IKur, and -16.3 mV and 146 ms 

with blocked IKS vs. -2.3 mV and 187 ms with blocked IKS+ IKur).( Fig 12 ) 
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FIGURE 12 

In "healthy" atrial myocytes with weak delayed rectifier currents (IKr and IKS) 
4-AP-induced IKur block does not shorten the action potential duration 

(computer simulation ) 

Effect of IK,,;- blocking on "sinus-rhythm" action potentials in the presence of carbachol 

The pretreatment of sinus rhythm preparations with 1 pM carbachol shortened the action 

potential duration ( 175.4 ±10 and 276.7 ±20.8 ms [n=6] vs. untreated 290.8 +S.3 and 413.6 

± 1 0 . 4 ms [n=16], A P D 8 0 and A P D 9 0 , respectively ), shifted the plateau to more negative 

potentials (-28.4 ±5.8 [n=6] vs. untreated -21.0 ±2.5 mV [n=16]) and slightly hyperpolarized 

the resting mebrane potential (-75.0 ±1.1 [n=6] vs. untreated -72.4 ±1.1 mV [n=16] ). In the 

presence of carbachol, 4-AP elevated the action potential plateau (from -28.4 ±5.8 to -10.6 

±5.5 mV, [n=6], p< 0.01), as was routinelly observed in other preparations too. However, the 

APD 8 O and A P D 9 0 were somewhat lengthened ( from 175.4 ±10.0 and 267 ±20.8 to 240.4 

±16.1 and 330.8 ±26.8 ms, respectively ) by 4-AP after carbachol pretreatment. Other action 

potential parameters measured in the presence of carbachol remained practically unchanged 

by an additional 20 min incubation with 4-AP. ( Fig 13, TABLE 4 ) 
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FIGURE 13 

Effect of 4-AP on the action potential in sinus-rhythm (SR) and atrial fibrillation (AF) in 
two representative preparations in the presence of 1 pM carbachol 

TABLE 4 
Effect of 5-pM 4-aminopyridine 

on the action potential parameters in "healthy" human right atrial appendages 
pretreated with 1 pM carbachol at a driving rate of 1Hz 

RMP 
(mV) 

AMP 
(mV) 

Vmax 
(Wis) 

APD20 
(ms) 

APDso 
(ms) 

APDgo 
( ms) 

NOTCH 
(mV) 

PLATEAU 
(mV) TRIANGULARITY 

abs amp abs amp 
control -75.0 94.2 236.3 7.7 175.4 276.7 -42.8 32.2 -28.4 46.8 -2.36 

±1.1 ±2.1 ±23.4 ±4.5 ±10.0 ±20.8 ±3.6 ±4.1 ±5.8 ±4.8 ±0.43 
+ 5PM -73.1 93.6 236.1 20.00 240.4 330.8 -20.6 52.5 -10.60 62.5 -1.97 
4-AP ±1.4 ±2.1 ±17.8 ±11.1 • ±16.1 • ±26.8 ±8.9 ±8.2 ±5.6 • ±6.0 • ±0.65 

mens±SE, n = 6, p < 0.05, abs: absolute values, amp: amplitude from RMP 

Effect of IKnr blocking on "fibrillatinq" (AF) action potentials in the presence of 
carbachol 

In atrial trabecular preparations taken from patients with chronic atrial fibrillation the action 

potential form varied greatly. The treatment of preparations with 1 pM carbachol did not 

result in any significant APD shortening or in any dramatic change in the characteristics of 

the plateau phase. Exposure of carbachol treated AF trabeculae (n=4) to 4-AP resulted in 

plateau elevation (from -5.8 ±2.3 to +7.5 ±2.9 mV) without any statistically verifiable change 
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in APDgo values (263 ±15.1 ms as control vs. 272 ±16.7 ms after 20 min incubation with 5 pM 

carbachol) ( Fig 13 ). 

Simulation of the effect of I KM, blocking on different ionic currents in the presence of 
activated IKAQ in "healthy" atrial myocytes 

The incorporation of an lKAch current with 0.07 mS/pF in the atrial action potential model 

markedly shortens the action potential duration (from 260 to 149 ms at 90% repolarization) 

shifts the plateau to more negative potentials (from -14.8 to -32.1 mV ) and hyperpolarizes 

the resting potential by 3 mV. The hyperpolarization of the action potential is strong enough 

to make the Ca2+ current weaker during the plateau (maximum current: -2.44 vs. -3.15 pA/pF 

without IKACh )- The lower depolarizing activity arising from this secondary decrease in the 

Ca2+ current intensity is not capable of keeping back the unbroken evolution of the 

repolarization and hence neither the notch nor action potential dome can be formed so the 

restoration of the resting potential can be achieved earlier. Moreover, the faster 

repolarization without an action potential dome weakens the maximum IKr and IKs activities 

too (from 0.8 to 0.2 and from 0.13 to 0.04 pA/pF, respectively). Under such circumstances, 

although only small IKur current flows during the plateau, its role is very important. When IKur 

is blocked the speed of the early repolarization slows down. This slower, early repolarization 

makes ICaL more intensive, and this secondary activated ICaL can even reverse the direction 

of the repolarization for a while, especially after the lt0 has already been inactivated. The 

process results in the formation of a characteristic notch. The upward bending dome makes 

it possible for more IK, to be activated. And this more intense IKr then repolarizes the 

mebrane potential to a level, where the resting potential can be restored by the inward 

rectifiers alone. With activated IKAQ, and unblocked IKur, the Ca2+ influx into the myoplasm 

decreases, which results in a smaller Ca2+ transient, as well. The smaller Ca2+ transient 

brings about a reduction in the rate of the Na+-Ca2+ exchange. The shortening of the APD 

after IKACh activation can also be attributed to this accompanying reduction in the exchanger 

activity. When the IKur is switched off, the Ca2+ transient becomes greater, and the more 

intensive Ca2+ current together with an enhanced inward exchanger current will make APD 

longer. When a high density of IKS is supposed and the IKS is regarded as activated by [ Ca2+ 

]i, the elevated myoplasmic Ca2+ concentration and the more positive plateau potential 

resulting from the IKur inhibition, may theoretically also activate more IKS. However, even it is 

so, the Ca2+-induced recruitment of additional IKS activities remains insufficient in the 

substitution of the absent IKur functions for keeping the action potential duration short ( Fig 

14,15). 
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FIGURE 14 

Effect of IKUr-inhibition on different current activities 
and on the time course of the [Ca2+] transient in the presence of activated IKAch 

(computer simulation ) 
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FIGURE 15 

In human right atrial action potential models with activated IKAch5 IKur inhibition 
lengthens the action potential duration 
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The effect of 4-aminopyridine on the APD-restitution in the presence and absence of 
carbachol in sinus rhythm, atrial fibrillation and at 1Hz driving rate 

As a tendency, the 4-AP induced restitutional APD changes both in sinus-rhythm and 

"fibrillating" atrial tissue could be compared with those determined at a 1Hz driving rate. 

Namely, after 20 min incubation with 4-AP, the APD was shorter practically over the whole 

diastolic interval (Dl) range in sinus-rhythm. However, in "fibrillating" trabeculae or in sinus-

rhythm trabeculae pretreated with carbachol, where APD80 and APD90 values were increased 

with the application of 4-AP at a 1Hz driving rate, 5 pM of 4-AP induced consequent 

restitutional APD lengthening. The restitution of the height of the action potential plateau was 

influenced by 4-AP in a similar way in each groups. Throughout the entire Dl range, the 

plateau occurred at higher membrane potentials in the presence of 5pM 4-AP. ( Fig 16 ) 
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FIGURE 16 

The effect of 4-AP on the action potential restitution at a 1 Hz basic cycle length in 
human right atrial trabeculae taken form patients with sinus-rhythm (SR) and chronic 

atrial fibrillation (AF) 

In sinus-rhythm preparations, the plateau restitution markedly followed a biphasic Dl-

dependence reaching the highest ( more depolarized ) plateau levels at Dis between 200 

and 600 ms. At Dis longer than 1000 ms, the action potential plateau ( and also the action 

potential dome ) became gradually smaller ( or less expressed ). This tedency, though, was 
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less noticeable in "fibrillating" preparations or in the carbachol pretreated sinus-rhythm group. 

The highest initial velocity of APD and plateau restitution was measured in "fibrillating" atrial 

preparations ( 4.39 ±1.21 msAPD/msDi and 1.46 ±0.32 mVpuvrEAu/msDi, respectively ). 

TABLE 5 
Parameters of the action potential restitution 

sinus rhythm ( n=11 ) 

parameter 
APD PLATEAU 

parameter CONTROL +5 pM 4-AP CONTROL +5 pM 4-AP 
amplitudes 

A„ 302.7 ± 2.3 ms 278 ±4.1 ms ^ 54.05 ±0.21 mV 68.20 ±0.46 mV 
A, 119.0 ± 12.7 ms 94.9 ±3.3 ms 23.03 ± 0.28 mV 29.56 ± 0.67 mV ^ 
A2 30.0 ± 11.6 ms 53.4 ±3.2 ms 0.0016 ± 0.0002 

mV/ms 
0.0022 ± 0.0004 

mV/ms 
time constants 

110.5 ± 12.1 ms 44.3 ± 3.4 ms ^ 96.81 ±3.34 ms 72.85 ± 4.55 ms ^ 
563.4 ±243.7 ms 946.8 ± 180.8 ms ND ND 

sinus rhythm +1 pM carbachol ( n=6 ) 

parameter 
APD PLATEAU 

parameter CONTROL +5 pM 4AP CONTROL +5 pM 4AP 
amplitudes 

A„ 193.2 ± 1.0 ms 236.3 ±1.3 ms^ . 50.70 ±0.31 mV 60.96 ± 0.64 mV 
A, 68.4 ±2.4 ms 140.3 ±3.1 ms^ . 17.57 ±0.60 mV 34.42 ±0.98 mV 
A2 ND ND 0.0007 ± 0.00031 

mV/ms 
0.0005 ± 0.00056 

mV/ms 
time constants 

D 223.5 ±25.0 ms 97.1 ±7.6 ms^ . 33.95 ±3.1 ms 33.62 ±2.93 ms 

T2 ND ND ND ND 

atrial fibrillation ( n=6 ) 

parameter 
APD PLATEAU 

parameter CONTROL +5 pM 4-AP CONTROL +5 pM 4-AP 
amplitudes 

A„ 229.2 ± 0.6 ms 264.6 ± 0.7 ms + 78.59 ± 0.27 mV 90.77 ± 0.33 mV + 
A, 90.1 ±4.4 ms 118.6 ±4.9 m s ^ 35.26 ±0.54 mV 43.15 ±0.71 m V ^ 
A2 54.9 ±3.3 ms 60.1 ±3.7 ms 0.0015 ± 0.00023 

mV/ms 
0.001010.00028 

mV/ms 
time constants 

20.5 ±2.6 ms 20.1 ±2.2 ms 24.03 ± 1.05 ms 18.33 ±0.91 m s ^ . 
T2 291.2 ±29.3 ms 287.9 ±29.1 ms ND ND 

Restitution was modelled by the following equations: APD: A,, - A,exp( -DM x,) - A2exp( -DI/t2 ), PLATEAU: A<, - A,exp( -DI/ 
T| ) - A2DI, where DI: is the length of the diastolic interval in ms, A„ would be the value of the action potential parameter at infinitely long 
DI, A, and A2 are maximum amplitudes of the restitutional processes with ri and r2 time constants. In case of the PLATEAU restitution the 
second term was rather linearily dependent on DI with an A2 slope. Statistical analysis: two sampled Student's t-test < 0.05; ND: not 
determined. 

The commencement of APD restitution took place at a markedly slower kinetics In sinus-

rhythm preparations (1.08 ±0.29 msAPD/msD|) and it occurred at the slowest rate when sinus 

rhythm preparations were pretreated with carbachol ( 0.31 ±0.11 msAPD/msD| ). In all three 

cases, the initial velocities of both APD and plateau restitutions were uniformly increased by 

the application of 5 pM of4-AP. ( Fig 16, TABLE 5 ). 
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Other observations on human atrial preparations with 4-aminopyridine 

The effects of drugs on frequency dependent or restitutional action potential alterations are 

frequently analyzed to elucidate antiarrhythmic actions. Since the human atrial preparations 

under our experimental circumstances proved to be extremely sensitive to any changes in 

stimulation frequency, the frequency dependent 4-AP effects could not really be investigated 

in practice. Human atrial trabeculae responded to stimulation protocols rutinely used for 

cardiac preparations of other types83,84'85,86- with the shortening of APD, disappearance of the 

action potential dome and depolarization of the resting mebrane potential. In this respect 

"sinus-rhythm" preparations tended to perish faster than those from patients with atrial 

fibrillation. With longer diastolic intervals, the APD in diseased preparations often showed 

anomalous restitution, and their APD values grew gradually shorter at extrastimulus coupling 

times over 1000 ms. Although, this could not be proved statistically because of the limited 

number of preparations, inclination to anomalous restitution seemed to correlate with the 

severity of the heart insufficiency (i.e. with worsening of the left ventricular ejection fraction). 

It was also noticed that resposiveness of human atrial preparation to other APD prolonging 

interventions were sometimes qualitatively different from those of animal preparations, and 

this difference may even be enhanced by various pathological conditions. 

The role of INa in shaping the cardiac action potential as revealed by the application 
of detaimium in experiments on canine cardiac preparations 

The most characteristic action of a large group of antiarrhythmic drugs is the inhibition of INa, 

which causes a decrease in the conduction velocity. During the action potential plateau 

phase, the INa window current flows and the intensity of this is an important factor in 

determining the APD values. The extent of APD changes brought about by the INa block 

varies among cardiac tissues of different types. It is less prominent in ventricular myocytes 

and most evident in Purkinje fibers, as was demonstrated with detajmium in canine cardiac 

preparations. In both ventricular myocardium and Purkinje fibers, 1pM detajmium significantly 

decreased the action potential amplitude and Vmax, without influencing the resting and 

maximum diastolic potentials. In ventricular muscle, the APD value was only slightly affected 

by the drug. However, in Purkinje fibers 1 pM detajmium induced marked APD shortening83. ( 

Fig 17, ANNEX I) 
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FIGURE 17 

The effect of lpM detajmium on cardiac action potentials in canine ventricular (A) and 
Purkinje (B) fibers at a cycle length of 1000 ms. Drug-induced changes in the Vmax are 

given as inserts on the right side of the figure 

The application of lidocain in concentrations below 6 pM did not significantly influence the 

shape of "healthy" human atrial action potentials at a steady-state driving rate of 1Hz. 

However, in the presence of 12 pM lidocain, the plateau potential moved to more negative 

levels (from -12.5 ±3.2 to -21.8 ±2.8 mV) APD90 was shortened (from 351.0 ±10.2 to 298 ±5.7 

ms) in 3 representative experiments ( Fig 18 ). 

Tedisamil ( 1pM ) was found to significantly increase APD90 in both atrial and ventricular 

myocardium. The resting potential and action potential amplitude were not altered by the 

drug. The lengthening of repolarization was more pronounced in the atrial muscle than in 

ventricular one ( 28.9 ± 3.3 vs. 13.3±5.2%, n=6, [p<0.05]). Furthermore, the drug-induced 

APD prolongation at 50% repolarization was found to be significant in atrial but not in 

ventricular preparations. In ventricular myocardium 1pM depressed Vmax by a small but 

significant degree. In atrial myocardium, however, the drug effects on Vmax did not prove to 

be significant87. ( Fig 19 ) 

Effects of lidocaine on the action potential duration of "healthy" human atrial 
preparations 

Effects of tedisamil on human atrial and ventricular action potentials 
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FIGURE 18 

Effect of lidocaine on "healthy" human right atrial action potentials at a steady-state 
driving rate of 1Hz 
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FIGURE 19 

Effect of 1 pM tedisamil on the action potential in human ventricular (A) and atrial (B) 
fiber at a steady-state driving rate of 1Hz 

Effects of tedisamil, quinidine and Sotalol in rabbit atrial muscle 

The effects of these three drugs on repolarization were similar: the APD of action potentials 

was prolonged by each of them. Out of these drugs, only quinidine reduced Vmax
 85.( Fig 20, 

ANNEX II ). 
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FIGURE 20 

Effect of tedisamil, quinidine and sotalol on the action potential in rabbit atrial muscle 
with a stimulation rate of 1Hz 

DISCUSSION 

Within human heart, IKur is exclusively expressed in the atria. According to 

cardiologists, who argue for the application of channel specific agents as antiarrhythmics, the 

targeted treatment of atrial tachyarrhythmias could be achieved by selective inhibition of this 

current. Their view is tacitly based on practical observations with ventricular arrhythmias and 

also on a common dogma in cardiology. The clinical observations lead them to think, that 1) 

in ventricular tissue, agents prolonging APD are effective antiarrhythmics at a relatively low 

risk of proarhyrthmia, and 2) selective agents have side effects that are controllable and less 

diverse than the nonselective ones. The current dogma is that by blocking a repolarizing K+ 

current one will inevitably increase the length of an action potential. 

One such example is IKur which can be selectively blocked using 4-AP. In isolated 

myocytes EC50 values of 30-50 pM were found in patch clamp experiments. With lt0 ( the 

other 4-AP sensitive current expressed in cardiac tissues ) a detectable block can be 

achieved by applying 4-AP concentrations of 100 pM or above. Our findings here also 

confirmed the belief that low 4-AP concentrations effectively modify the shape of human 

atrial action potentials. In isolated tissue preparations, however, the action potential 

parameters most sensitive to 4-AP were found to be the notch and plateau voltages ( with 

EC50 13-16 pM in right atrial trabeculae from patients with sinus-rhythm ). In our experimental 

circumstances 4-AP - even when applied in concentrations as low as 5pM - could still induce 
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readily detectable plateau elevations both in "sinus-rhythm" and "fibrillating" trabeculae. The 

determination of EC5o values in trabeculae from subjects with chronic atrial fibrillation could 

not be carried out, owing to the variability of "fibrillating" action potential forms and the limited 

number of available preparations. However, 4-AP induced APD changes were found to be 

different in "sinus rhythm" and "atrial fibrillation". In "atrial fibrillation" with triangular action 

potential forms, 4-AP clearly lengthened the APD. In "sinus-rhythm" preparations, though, a 

4-AP-induced APD shortening was detected. 

As the action potential simulations made apparent, the 4-AP-induced APD shortening 

observed in undiseased (sinus-rhythm) preparations is a result of the close relationship 

between IKur, IK, IKS, ICaL, INaCaExand the [Ca2+]j transient. 

The plateau potential of the sinus-rhythm action potentials in our experiments were 

between -30 and -20 mV under control conditions. If the repolarizing "force" gets reduced 

because of a selective IKur block, the depolarizing effect of ICaL becomes more pronouced 

and the action potential plateau shifts into a more positive potential range. Plateau potentials 

above -20 mV, however, activate IK more effectively, and the resulting APD will be even 

shorter than it would have been with unblocked IKur. The extent of plateau elevation basically 

depends on the kinetic features of ICaL and on the existence of a voltage range, where ICaL 

does not fully switch off and there is a flow of the ICaL window current. When the conditions 

do not favour a proper window current (i.e. the action potential plateau is too short in 

duration, the plateau voltages are remotely located from the the window domain, action 

potential notch can not be formed, or too deep notch voltages rapidly ensue), IKur block-

induced APD shortening can not occur. 

When IKr was selectively blocked by E-4031 in sinus-rhythm preparations with low 

plateau levels, the lengthening of APD turned to be moderate. When 4-AP was applied in the 

presence of E-4031, the 4-AP induced plateau elevation failed to acivate the IK current and 

consequently the lengthening effect (i.e. K+ channel block) on APD prevailed. If the IKS was 

strong (as was postulated in the action potential model), absent IK functions could be 

substituted to some extent by the activation of IKS at plateau levels around 0 mV. However, 

IKS becomes activated slower than IK and the evolution of the maximum IKS current is 

delayed. Owing to the kinetics of the process, an enhanced IKS could keep APDs at their 

original lengths (i.e. at values before the inhibition of IKr or the application of 4-AP). This 

mechanism might be also the reason why in current clamp experiments on isolated "sinus-

rhythm" myocytes, APD chages were not found in the presence of low 4-AP concentrations. 

In "fibrillating" atrial trabeculae, the action potential plateau was elevated and APD 

was lengthened by applying 4-AP. But in chronic atrial fibrillation, lt0 and ICaL are 

downregulated. Data on changes in densities of other ionic currents are at present 

contradictory. It has been shown that the characteristics of intracellular Ca2+ handling are 
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influenced by chronic atrial fibrillation in such a way that the Ca2+ sequestering capacity of 

the sarcoplasmic reticulum becomes reduced. The absence of an lt0 current decelerates the 

rate of early action potential repolarization, which - in turn - inhibits the reactivation of ICaL. 

Diminution of the ICaL intensity due to down-regulation, the failure to be reactivated again 

and also a reduction of [Ca2+]i transient together result in a decreased INaCaEx flow in the 

inward direction. As a result, the APD shortens, the action potential form becomes triangular 

and mechanical activity disappears. If IKur is blocked in "fibrillating" atrial myocytes, the 

elevation of the action potential can not lead to surplus IKr or IKs activation and APD 

lengthens. 

The role of M2 receptor activation in the triggering of atrial rhythm disturbances is 

nowadays regarded as an established fact. Most effective compounds used in atrial 

fibrillation also possess IKAch blocking activity88. The activation of M2 receptors in atrial 

preparation accelerates the fast repolarization, moves the action potential plateau to more 

negative voltages, shortens the APD and hyperpolarizes the resting mebrane potential. If K^ 

is blocked APD prolongation will occur, so long as the secondarily induced plateau elevation 

remains small and incapable of activating more IKr. 

In subjects with a structural heart disease, the risk a sympathetically triggered or 

sustained atrial fibrillation is much higher than in other heart patients. At dominance of the 

sympathetic tone, intracellular level of cAMP is elevated, ICaL becomes more activated, the 

intensity of IKr remains constant or becomes reduced, IKS is activated and IK, may become 

activated in atrial myocytes. The value of the resting mebrane potential depends on to what 

extent different cAMP dependent background currents can be counterbalanced by an 

increase in IKi. If the mechanisms outlined above hold, the APD of "fibrillating'' action 

potentials of sympathetically mediated types should be prolonged by the inhibition of IK^. 

Cardiac excitation may be viewed as an electrical wave with a wave-front 

corresponding to the action potential upstroke (phase 0) and a "wave-back" corresponding to 

repolarization (phase 3). The wavelength is the distance between the wave-front and wave-

back and is equivalent to the product of APD and the conduction velocity (CV). Moe and his 

coworkers89 demonstrated that simulated cardiac tissue could support multiple reentrant 

wave-fronts meandering in complex patterns resembling fibrillation, so they proposed the 

multiple wavelet hypothesis for atrial fibrillation. This hypothesis was later elegantly validated 

in the experiments of Allessie et al90. In cardiac tissue the conduction time (CT) depends also 

on the wave-front curvature91. At a critical curvature, the source of depolarizing currents is 

too small to bring the resting tissue to its threshold level, and propagation fails (break). When 

a break occurs along a propagating wavefront a spiral wave takes shape92,93. Spiral waves 

are greatly prone to instability: the core around which the spiral arm rotates is not stationary 

but meanders through the tissue and they can break up to form multiple waves94,95, resulting 
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in appearance of polymorphic tachycardia or even fibrillation in both ventricular96,97,98 and 

atrial tissues90. 

In two-dimensional models of cardiac tissue, the models incorporate many automata 

with resting, excited and refractory states ( the bare essentials of a cardiac cell ). When 

sufficient "preexisting" electrophysiological inhomogenities are introduced into the "tissue", 

cardiac waves spontaneously break up into random reentry99. In Moe's simple model this 

was achieved by randomly introducing local differences in the APD to cells throughout the 

tissue. In Moe's model, the heterogeneity was static, and was maintained throughuout the 

whole simulation procedure. Dynamic heterogeneity is another mechanism that requires a 

preexisting heterogeneity of some kind to create the first wavebreak. After that, the 

wavebreak proceeds spontaneously on its own. This type of wavebreak is primarily 

determined by the electrical restitutional properties, i.e. the dependence of APD and CV 

values on the preceeding Dl, defined as the interval between repolarization and the next 

action potential. The APD and CV values are therefore key determinants of the wavebreak 

process. The steepness of APD restitution is also a critical parameter for spiral wave stability. 

When the slope of APD restitution exceeds a certain value, a small change in Dl is amplified 

into a large change in APD. This in turn creates a larger change in Dl for the next wave, and 

so on. The positive feedback causes small wavelength oscillations to progressively grow until 

Dl becomes too short for the wave to propagate, resulting in a wavebreak. In contrast, a flat 

APD restitution acts like an attenuator, allowing perturbations in the wave to heal rather than 

expand100. By reducing APD restitution steepness, spiral wave breakup can be prevented 

and spiral wave behavior can be progressively stabilized. This concept is termed as the 

restitution hypothesis101 and has now been validated in several experimental models102,103. A 

natural consequence of steep APD restitution is the APD alternants. When they occur in the 

ventriculi they are electrophysiologicaiiy manifested as T-wave alternants (a clinically 

established harbinger of arrhythmia vulnerability104). This alarming connection between the 

steepness of the restitution and the propensity for the occurrence of APD alternants can 

readily be seen when the restitution is measured with stimulation protocols which alternately 

vary Dl as was done in studies undertaken here. 

The action potential restitution was altered by 4-AP both in "sinus-rhythm" and 

"fibrillating" atrial trabeculae in a similar manner as to the way in which the action potential 

characteristics were altered by the drug at a steady-state stimulation rate of 1Hz. When 

compared to the control, the height of the plateau amplitude was found to be higher and the 

APD was shorter throughout the whole Dl range (in the presence of 4-AP) in "sinus rhythm" 

preparations. In trabeculae taken from patients with chronic atrial fibrillation, where the drug-

induced plateau elevation was accompanied by APD lengthenings at 1Hz, APD restitution 

was also delayed by the application of 4-AP (i.e. restitutional APD was always longer in the 

ji 
\ 



35 

presence of 4-AP than under control conditions ). Shortened restitutional APDs after M2 

receptor activation were subsequently lengthened by applying 4-AP at all DIs. Compared 

with "sinus rhythm" preparations, the initial steepness of APD restitution was always higher in 

"fibrillating" trabeculae. The enhanced initial steepness of APD restitution was also observed 

with monophasic action potential measurements in patients and is regarded as a malign 

factor in the generation of atrial fibrillation105. Irrespective of the type of preparation (i.e. 

sinus-rhythm or "fibrillating"), the initial steepness of APD restitution was always enhanced by 

adding 4-AP in our experiments. Taking into account this latter observation and the 4-AP-

induced changes in APD restitution, 4-AP might exert antiarrhythmic actions in atrial 

fibrillation and in stages with predominance of the parasympathetic tone, but its effects on 

the electrical activity of the "healthy" atrial myocardium should rather be regarded as 

proarrhythmic. The potential proarrhythmic feature of 4-AP is also supported by the 

observation that action potential forms both in "sinus-rhythm" and "atrial-fibrillation" 

preparations were brought into a more triangular configuration, in ventricular tissue with 

diverse cellular elements, drugs generating more triangular action potential forms also 

possess enhanced proarrhythmic capabilities10. 

The secondary effects of the 4-AP -induced IKur block on the intensity of iCaL and the 

[Ca2+]i transient may also be hazardous to patients in atrial fibrillation or in the prefibrillatory 

stages with an electrical remodelling in progress. It is generally accepted today that the 

disruption of [Ca 2 l homeostasis plays a crucial role in the initiation of electrical remodelling 

and thereby in the perpetuation of atrial fibrillation36,46. 

Ca2+ enters the atrial cells through voltage-, receptor- and "source"-operated 

channels. Then the Na+-Ca2+ exchanger and less importantly a sarcolemmal Ca2+ pump are 

responsible for its removal. The inward-flowing Ca2+ ions (Ca2+-induced Ca2+ release) and 

also the rapid depolarization in during the onset of the action potential (voltage-induced Ca2+ 

release) mobilize Ca2+ from intracellular stores. In ventricular cells the Ca2+-induced Ca2+ 

release is brought about by an interplay between the L-type Ca2+ channels and the 

ryanodine-receptors in the T-tubules. In atrial cells the T-tubular system is less developed 

and a significant portion of the sarcoplasmatic reticulum is not attached to the sarcolemma 

(corbular sarcoplasmic reticulum). This also means, that in atrial myocardium ryanodin 

receptors may operate independently of the L-type Ca2+ channels. The corbular sarcoplasmic 

reticulum contains other Ca2+ releasing receptors regulated by intracellular second 

messengers (i.e. inositol triphosphates, diacylglycerol, or nicotine-andenosine-nucleotides). 

Ca2+ ions released into the myoplasm are taken up by the sarcoplasmic reticulum via the 

reticular Ca2+ pump and by the mitochondria. In the sarcoplasmic reticulum Ca2+ is 

sequestered and stored by Ca2+ binding proteins. Previously these Ca2+ binding proteins 

were thought to play only a passive role. Today it seems that reticular Ca2+ binding proteins 
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possess a signalling role in gene transcriptions and in events leading to apoptosis. The 

primary role of Ca2+ entering the mitochondria is to regulate the rate of ATP production with 

ATP requirements of ion-pumps and mechanical activity. Excess Ca2+ in the mitochondria 

also leads to a release of apoptotic mediators into the myoplasm106. (Fig 21) 
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FIGURE 21 

Connection between intracellular Ca2+ homeostasis and remodelling and apoptosis in 
chronic atrial fibrillation 

The connection between changes in [Ca2+]i and the cell-cycle is well documented in 

the literature. In some cases [Ca2+]i elevations leading to cell proliferation are introduced by 

the upregulation of K+ channels. In neurons, the normal expression pattern of ion-channel 

genes requires rhythmically fluctuating low level intracellular Ca2+ concentrations. The 

increased stimulus frequency in atrial flutter and fibrillation39 means, for the cell, an increased 

burden of the Ca2+ load. Depending on the activation sequence of various Ca2+ signalling 

systems, both in the myoplasm and in the cell-organelles, response patterns ranging from 

altered protein expression to myocardial hybernation and apoptosis may emerge (Fig 22). It 

follows - from the central role of [Ca2+]i in the pathomechanism of atrial fibrillation - that 

antiarrhythmic drugs become less suitable for the treatment of atrial flutter or atrial fibrillation 

the more they elevate secondarily the intracellular Ca2+ concentration. It is worth noting, that 

for repolarization lengthening ( Class 3 ) drugs in ventricular arrhythmias, it was always 

positive argued that they did not reduce the contractile force or even were able to increase 

the inortopy. However, the atrial tissue is more sensitive than the ventricular and any 
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increase in the "fibrillating" [Ca2+]j tends to promote aggravation of the disease. This may also 

provide an explanation for the increasing ineffectiveness of antiarrhyrthmics over time in the 

treatment of chronic atrial fibrillation. It is worth mentioning that cardiac glycosides tend to 

worsen reverse remodelling107 while verapamil delays the structural remodelling of atrial 

myocytes in animal models108. 
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FIGURE 22 

The dependence of ion channel remodelling and apoptosis on electrical activity 
and the extent of the Ca2+-load in atrial myocytes 

As computer simulation revealed, the effects of 4-AP on IKur are inevitably followed by 

an increase in the [Ca2+]j transient. But this means that even though IKur blocking had some 

antifibrillatory benefits in chronic atrial fibrillation (APD was prolonged and action potential 

restitution was delayed by 4-AP in trabeculae taken from subjects with chronic atrial 

fibrillation), the accompanying increase in [Ca2+]i has a tendency to prevent the complete 

recovery of the diseased (remodelled ) fibrillatory state. 

Our results also highlight the rule that what Is true for the ventriculi (i.e. if a 

channel/current has a repolarizing function, an antiarrhythmic effect should be achieved via 

its inhibition) is not necessarily true for atrial tissues. As it has also been demonstrated in 

most of our atrial action potential simulations, in atrial myocytes the interplay between ionic 

currents and changes in the ionic composition of the intracellular millieau is very complex 

and pharmacological interventions may result in effects that a reductionistic 

cardiophysiological logic fails to predict or imagine beforehand. 
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Computer simulation is an important tool for investigating possible causal connections 

between channel and transporter functions in cardiac myocytes. In our study, the importance 

of IKr and IKS currents in the modulation of 4-AP-induced APD changes was revealed by 

action potential simulations. As was also experimentally demonstrated application of an IKur 

blocker with an IKr blocker in combination, can minimize the proarrhythmic action potential 

effects of the IKur block. With such a combination the IKur-block-induced APD shortening 

could effectively be halted or even a net APD lengthening could be achieved. On the other 

hand, in the therapeutical application of an IKur+iKr blocker combination, doses of the IKr 

blocker could also be reduced, which would also reduce the risk of unwanted side effects, 

first and foremost arrhythmias of the "torsade" type. 

LIMITATIONS OF THE MODEL 

Action potential models are frequently used in electrophysiology. The application of 

models is inevitable for the integrative interpretation of experimental results obtained under 

the extremely aphysiological circumstances of the patch-clamp technique. In the more 

physiological multicellular preparations ( due to the unrestricted physiological interplay 

between the elementary functions ) actions seen in patch-clamp experiments can not always 

be verified persuasively. A scientific interpretation of such discrepancies is practically 

impossible without using computer models. However, the accuracy of the models is basically 

dependent on the accuracy of the experimental data. In the present action potential model, 

published maximum conductance values for ionic currents were used. Some of these 

conductances had to be readjusted in order to get typical multicellular action potential forms 

for a steady-state stimulation rate of 1Hz. (APPENDIX, TABLE 7 ). The gating equations for 

INa and ICaL had to be re-formulated ( APPENDIX, TABLE 8 ) because the relevant 

formalism available in the literature at present cannot be regarded as sensible either from a 

physiological or a computational point of view. Our equations yielded exactly the same 

voltage dependencies for steady-state and time constant values of the relevant gating 

variables as if they had been calculated using the traditional mathematical expressions. 

In this respect it is worth noting, that most action potential models treat the channel 

gating as if it could be represented by some set of simple open-closed state transitions. The 

whole channel gating is of course, a rather more complicated process. Fifty years of voltage 

clamp studies on ionic channels have yielded a wealth of kinetic data and the need to 

interpret this enormous set of data has led to empirical models in which gating consists of 

charge translocation between a finite ( but large ) number of discrete, so-called Markovian109 

states110,111,112. This discrete-state Markov models operating with forward and backward rate 

constants on the analogy of chemical reactions113 have been very successful in reproducing 
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the time course of native channel currents, but they lack a physical interpretaion that is 

consistent with properties of large channel proteins114. If it is so, and our present views on 

elementary channel processes are only fictions, the application of the traditional formalism 

cannot be regarded as an imperative. 

In our model the same compartments for ion-movements were taken into account as 

those in the Luo-Rudy (LR) model78 ( APPENDIX, Fig 23 ). However, the LR-model was 

specifically intended for guinea pig ventricular cells. Readjusting of compartment sizes to suit 

the situation in human atrial tissue was prevented by a scarcity of relevant data. 

The compartment sizes and the kinetics of the ion movements through and between 

the different compartments (especially for Ca2+), however, may directly influence 

sarcolemmal channel functions. Without an accurate representation of the simulated 

intracellular Ca2* movements, a realistic human atrial action potential model can not be 

imagined. 

In our model, the intracellular Ca2* handling was modelled in the same way as that by 

Zeng et al77. Although Ca2+ handling of this type proved to be a good choice in our model, it 

cannot be regarded as to be perfect. It does not take into consideration reticular Ca2*-release 

channels except ryanodine receptors and does not include reticular Ca2* buffers beyond 

calsequestrin. Even this Ca2+ handling model regards the ryanodine receptors as passive 

Ca2+ -regulated pores without any rectification. None of the models having been published so 

far, took Na*, K* and CI' channels in the subcellular membranes into consideration. Effects of 

drugs on ionic channels in membranes of cell organelles may also influence Ca2* movements 

and thereby Ca2*-regulated sarcolemmal ionic channels too. Action potential models ignore 

mitochondria, though their role in the Ca2+ homeostasis is well known. 

In our model, direct regulation by [Ca2*]; was postulated only for ICaL, IKS and IKca. 

However, INa and most of the K* currents are also known to be influenced by intra or extra-

cellular Ca2* ions. 

Effects mediated by intracellular second messengers such as cAMP, cGMP, 

muscarinergic effects but the activation of IKAch were not taken into account here. 

The role of IKr in resting myocytes has probably been overestimated. Under 

experimental circumstances the blocking of this current did not cause APD to such an extent 

that was predicted by the model. The maximum conductance of IKs in the model is about 10 

times greater than the relevant values found in myocardial preparations. The rectifying 

properties of K* channels was regarded as merely a voltage dependent process, and a block 

by divalent cations or intracellular polyamines was not incorporated into the model. 

Performace of the model was not tested in simulations for APD restitution or 

frequency-dependence. Our goal here was to test and simulate effects at 1Hz. 
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SUMMARY 
Therapeutical Implications 

We have seen that by inhibition of the atrial specific IKur current, 

antiarrhythmic/antifibrillatory effects can be expected in "fibrillating" atrial myocytes and in 

"healthy" atrial tissue with overwhelming parasympathetic dominance. For a long-term 

therapeutical application, due to the secondarily induced changes in the [ C a 2 + ] j homeostasis, 

the effectiveness of IKur blockers however seems to be uncertain. 

Antiarrhythmic potency of IKur blockers may be enhanced by combination with IK, 

blockers. In "healthy" human atrial myocytes IKur blockers alter action potential parameters 

and also the action potential restitution with a rather proarrhythmic profile. Application of IKr 

blockers (dofetilide or sotalol) in combinations with IK^ blockers could reduce the possible 

enhancement of the risk to develop or to favour atrial fibrillation due to the shortening of the 

action potential duration and effective refractory period caused by the IKur block in sinus 

rhythm. A possible advantage of combining IK^ and IKr block over IKur block alone, seems to 

be that doses of IKr blockers could be reduced. 

Importance of action potential simulations 

Our results also highlight that the rule what is true for the ventriculi ( i.e. if some 

channel/current has a repolarizing function, via its inhibition an antiarrhythmic effect should 

be achieved ) is not necessarily true for atrial tissues. As it has also been proved by our atrial 

action potential simulations, in atrial myocytes the interplay between ionic currents and 

changes in ionic composition of the intracellular millieau is very complex and 

pharmacological interventions may result in effects unforeseen to a reductionistic 

cardiophysiological logic. 

Computer simulation is an important tool in discovering potentially existing 

relationships between channel and transporter functions in cardiac myocytes. In the present 

study, importance of IKr and IKS currents in modulation of 4-AP-induced APD alterations was 

revealed by action potential simulations at first. 
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APPENDIX 

FIGURE 23 

Schematic representation of currents, pumps and exchangers included in the model 
The model consists of 5 compartments: the bulk medium, cleft space, myoplasm and junctional and 

network sarcoplasmic reticulum ( JSR and NSR ). 

TABLE 6 

ABBREVIATIONS EMPLOYED IN THE MODEL 
in alphabetical order 

a or P: forward or backward rate constants in the model, otherwise pore 
forming or regulatory channel subunits 
A: change in the indexed parameter between two integration steps 
y: relative mebrane distance ( see equations for INaCaEx ) 
x: time constants 
At: length of the integration step 
a: probability of channel activation ( except INa ) 
b: probability of channel inactivation ( except INa ) 
bCa: Ca!* dependent inactivation 
CALM: calmoduline 
CICR: Ca2+-induced Ca2+ release 
CSEQ: calsequestrine 
E: Nemsf s potential 
f: function of the indexed variable 
fscaie: scaling factor ( see INaCaEx ) 
g: conductance 
IbCa* or 1 Bkg.Ca- background Ca~" current 
IbNa, or Iskg.Na* background Na* current 
ICaL: L-type Ca2* current 
ICaT: T-type Ca2" current 
la: background CI current 
If: pacemaker current ( not included in our model ) 
IK,: inward rectifier K* current 
IKACh: acetylcholine activated K+ current 
IKca: Ca2* activated K* current 
IKr: rapid component of the delayed rectifier K+ current 
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IK,: slow component of the delayed rectifier K+ current 
IK«,.: ultrarapid delayed rectifier K+ current 
INa: fast Na+ current 
INaCaEl: Na+-Ca2+ exchanger current 
INaKpmp: Na+-K+ pump current 
Ip: non selective plateau current ( not included in model) 
It0 or 1,0,: transient outward K* current 
It02: Ca2+ activated CI" current (not included in model) 
J: ion fluxes 
JSR: junctional SR 
Kd: dissociation constants 
kQlO: temperature coefficient 
k,at: saturation constant ( see INaCaEx) 
leak: Ca2+ leak from the network SR 
NSR: network SR 
on, off: synonyms for activation (on) and inactivation ( o f f ) 
over: overload 
RyR: ryanodine receptor 
SR: sarcoplasmic reticulum 
SRCapmp: SR Ca+ pump 
ss (in index ): steady-state 
Thr: threshold 
trans: simple ion transport via diffusion 
TROP: troponine 
Up: uptake 
Vm: membrane potential 
VOL: volume 
VOLR: volume ratio of the indexed compartments 
X: ion in general 
z: valence of an indexed ion 

TABLE 7 

CONSTANTS AND INITIAL PARAMETER VALUES 

Parameter 
R: gas constant 
T: temperature 
F: Faraday constant 
C,„: membrane capacitance 
ACap: capacitive mebrane area 
VOLcen: cell volume 
V O L ^ : volume of the myoplasm 
VOLSR volume of the sarcoplasmic reticulum (SR) 
VOLNSR: volume of the network SR 
VOLJSR: volume of the junctional SR 
VOLCier,: volume of the intercellular space 
ionic concentrations in the bulk medium 
[K*] 
[Na+] 
[Ca2+1 
[CI] 
ionic concentrations in the cleft space 
[K*lcieft or [K*]„ 
[Na+]cleft or [Na+]0 
[Ca2+]cleftor[Ca2+]0 

Value 
8.314 J/K/mol 

310 K 
964867 C/mmol 

1.000 pF/cm2 

1.53E-04 cm2 

3.80E-08 ml 
2.47E-08 ml 
3.80E-09 ml 
2.47E-09 ml 
1.33E-09 ml 
4.94E-09 ml 

4.50É+00 mM 
1.44E+02 mM 
1.31E+00 mM 
1.14E+02 mM 

4.50E+00 mM * ' 
1.44E+02 mM 
1.31E+00 mM 
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[Cl]c!e„ or [Cl]0 

ionic concentrations in the myoplasm 
[K+]cen or [K+]my0 

[Na+]h [Na+]«n or [Na+]my0 

[ C a 2 + | i , [ C a 2 + ] c e i i or [Ca2+]myo 

[crii, [Ci]cen or [cr]myo 
parameters for Ca2+ handling by the SR 
NSR [Ca2+] (at rest) 
NSR [Ca2+]max (maximum Ca2+ concentration in NSR) 
NSR Ca2+ uptake Kd (ie. SERCa or SRCaprap) 
NSR Ca2+ uptake maximum rate 
NSR Ca2+ transfer to JSR ( T ) 
NSR Ca2+ uptake rate (at rest) 
NSR Ca2+ leak rate ( at rest) 
NSR Ca2+ transfer rate (at rest) 
JSR [Ca2+] ( at rest) 
JSR Ca2+ overload rate constant ( x ) 
JSR Ca2+ time constant for CICR „on" in overload 
JSR Ca2+ time constant for CICR „off ' in overload 
JSR Ca2+ overload induced release ( at rest) 
JSR threshold of voltage induced Ca release 
JSR CICR rate konstant 
JSR CICR rate (at rest) 
TROPONIN [Ca2+] (at rest) 
TROPONIN [ C a 2 + ] r a a x 

TROPONIN Ca2+Kd • 
CALMODULIN [Ca2+] (a t rest) 
CALMODULIN [Ca2+]max 

CALMODULIN [Ca2+] Kd 
CALSEQUESTRIN [Ca2+] ( at rest) 
CALSEQUESTRIN [Ca2+]max 

CALSEQUESTRIN Ca2+Kd 
CALSEQUESTRIN Ca2+ overload threshold 
INa 
Smax 

m GATE ( at rest) 
h G A T E (at rest) 
j G A T E (at rest) 
ICaT 

Smax 

a G A T E (at rest) 
b G A T E (a t res t ) 
ICaL 

Smax 

a G A T E (at rest) 
b G A T E (at rest) 
Ca2+-iduced inactivation, Kd 
I.« 
8 max 

a GATE l at rest) 
b GATE (at rest) 
IK r 
Smax 

a GATE (at rest) 

1.14E+02 mM 
t: 

1.60E+02 mM * 
7.02E+00 mM 
2.88E-04 mM 
6.90E+00 mM 

• w.; 
8.12E-02 mM * 
3.00E+00 mM 
9.00E-03 mM 
1.00E-02 mM/ms 
1.80E+01 ms 
3.11E-04 mM/ms 
2.71E-04 mM/ms 
7.76E-05 mM/ms 
7.99E-02 mM 
2.00E+01 1/ms 
4.00E+00 ms 
3.00E+00 ms 
1.49E-29 mM/ms 

-2.00E+01 mV 
1.00E+01 1/ms 
7.06E-06 mM/ms 
8.85E-04 mM 
7.00E-03 mM 
2.00E-03 mM 
5.42E-03 mM 
5.00E-02 mM 
2.38E-03 mM 
2.33E-01 mM 
9.00E+00 mM 
3.00E+00 mM. 
8.75E+00 mM 

• •.•« r 

:s -••• • - •35'- .-pK 
••fjjL"-!-: 

1.50E+01 mS/pF 
5.17E-04 
9.97E-01 
1.00E+00 

5.00E-02 mS/pF 
5.04E-02 
8.29E-01 

• :' •• ? - • •' 
1.00E-01 (SR) mS/pF 

or 5.0E-03 (AF) 
4.48E-06 
9.40E-01 
4.00E-04 mM 

1.60E-01 (SR) mS/pF 
or 1.0E-02 (AF) 

1.67E-02 
1.00E+00 

3.00E-02 (SR) mS/pF 
or 3.0E-03 (AF) 

1.97E-04 
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b GATE (at rest) 9.91E-01 
IKr 

Smax 5.00E-02 (SR) mS/pF 
or 5.0E-03 (AF) 

a GATE (at rest) 2.00E-04 
Kd for [K+]o( CLEFT) 5.40E+00 mM 
IK, F • : '. c 
Smax 6.00E-01 (SR) mS/pF 

Kd for [Ca2+]j 
or 2.0E-01 (AF) 

Kd for [Ca2+]j 5.00E-04 mM 
a GATE (at rest) 2.13E-02 
IK, WJi'f 
i K l Smax 6.00E-02 mS/pF 
IKACh 'mmmm 
Smax 7.00E-04 mS/pF 

or 7.00E-02 
K+ permeability 8.00E-07 cm/s 
Kd for [Ca2+]J ( MYOPLASM J 4.00E-03 mM 
IKc •• :••!•• ••A," : 

• iJi?;. 
j 

Smax 8.00E-07 cm/s. 
Kd for [Ca2+]J 4.00E-03 mM 
Ifikg,Na 

r. • - i : £ i 
Smax 1.00E-04 mS/pF 
lBkg,Ca ' i / v L iirili"-
Smax 
¥ 

1.00E-06 mS/pF 
? • , . - p¥- - y . 

1Bkg,CI 

Smax 9.00E-03 mS/pF " 
INaCaEl 1' . 
Imax 1.50E+00 pA/pF 
Kd for [Na^OJCLEFT) 8.70E+01 mM 
Kd for [Ca2+]0 ( CLEFT > 1.30E+00 mM 
INaKpmp 
Imax 2.04E+00 pA/pF 
Kd for [Na+]J ( MYOPLASM ) 1.00E+01 mM 
Kd for [K+]o(CLEFT) 1.50E+00 mM 

CALCULATION OF THE MEMBRANE POTENTIAL 

The membrane potential was calculated by integrating of differential equation d( Vm 

)/dt = - (Iljon + Istim )/Cm. Numerical integration was carried out according to the modified 

Euler's method published by Rudy at al78. Depending on the estimated error, the length of 

the instantaneous time step varied between 0.001 and 10 ms. 
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TABLE 7 

CURRENT EQUATIONS 

total mebrane currents 

Z 'NO - 'NO + 'flfcy.No * 2 l u a C a E x + 3 'woXpmp 

Z'x = 'to + Vur +lKr + 'xs +IK1 ~2 ¡HaKpmp 
Z ' c o = ' c o r + ' c o t + ' i k y . C o - 3 • tuaCaEx 

Z ' c / - ' f l k j . C / 

intracellular ion concentrations except Ca2 

Af. =»0" 
z F VOLu 

Jm,X 
[XJi.new ~ íxh,e!d + Mnew 2m,X 

ion concentrations in the cleft-space 

[XJtxilk - [X] cleft 
rcleft 

Jcleft.X 
VOL 

VOIRAI = 
VOLcl.ft 

[XJdeft.new = [X]cleft,old + (2cleft,X ~ At new 2m,X ' 

Ca leak from network-SR 
2NSR,leak - IF ([Ca2* ]HSK < [Ca2* Jmyo)THEN 0 ELSE 2*7 iroco o r,tf lCa>' 1h'iR-[C°2' ln,yo 

'NSR,leak 
Ca2* uptake ( SERCa ) 

JNSR,Up " JNSR.Up^ax 
+

 KaCa.NSR,Up 
+ [Ca2*]MY0 

2 NSR.tr 

int raretlcular Ca flow 
lCa!*]NsR-tCa2*]jiR 

r NSR,trans 
Ca2* concentrât ion in network - SR 

new = fC" * JNSN + at <2NSR.Up • V0LRNSR ~ 2 NSRJeak " 2 NSR.trans) 

'aCR.n 
Ca2* -induced Ca2' release(CICR) 

, - IP (-3SmV <Vm) THEN taCK * At ELSE 0 
1 CICRo, 

, + exp<-!a<ÏZ±> 
acRofí '1-CKR„ 

1 CICRr.i -
1 • exp( I la 

JOCR = JCICR,n ( CICR^ CICRoff CICRnl ([Ca2* ]JStl - [Ca2* J^) 

Ca2* overload - induced Ca2* release 
IF ([CaCSEQJ Thr <= [CaCSEQ.]) AND (50ms<tovtr) THEN 

'•over/tew ~ "» ^over/nax ~ ^ 
ELSE 

* over,new ~ * over + At, J overjnax : 

*over . OVER m =1-exp(--

OVER0„ = exp(-
r.cff 

2aver ' 2averti OVER^ OVERoff ([Ca2*]JSK - [Ca2*]myo) 

Ca concentration in the junctional SR ( JSR ) 

ten2* 7 -b* -.b2*4C [La JjSR.new ' ^ 
b = [CSEQ.]total ' [CaCSEQ.] - A^jjsr - [Co2*]JSK * KdCa¡CSEQ 

c - Xdc0|CS£Q ([CaCSEQl + A[Ca,JSR T[Ca2*]JSR) 

¿[CaJJSR = at ( 3 NSR.trans ~ JOCR ~ 2aver) 

1 [CaCSEQ] = [CSEQltou, ^ 
Í + - Ca.CSEQ 

Ca2* concentrât ion in the myoplasm 

,9bc-2b3 - 27- d, arccosf r ——; 
,r le, 2 r. ~— , 2 (b3 -3 c)3'2 , b2 [Ca z* ]myo ,nrw = j [b2 -3c- cos( ^ ) - --

A = Kd c a .TROP + KdCa,CALM 
b = [CALM ]tota, + [TROP ]total - [Ca 2* ]Cotal + A 

c = (KdCaCALM Kd ca.TROP ) - [Ca2* ]tata, A + [TROP ]tota, KdCaCALM + [CALM]total Kd Ca JR0P 
d = -[Ca2* ]totai KdCa CALM • KdCa TROP 

[CaTROP ] = [TROP ]total 
1 + 

Kd Ca.TROP 

[CaCALM ] = [CALM ]total m 

[Ca 2+ ]n 

1 

1 + Ca.CALM 
[Ca2*]myo 

[Ca 1 total = [CaTROP ] + [CaCALM ] + af Ca Jmyo + [Ca 2* ]myo 

dfCa ]myo = àt (Jm.Ca + f 2 HSR .leak ~ 2 NSR ,Up ) ' í íyo
 + (2 CICR + 2 OVER ) ' myo I 
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Na * Ca 1' exchanger 

Vm F [Na * ]i . V_ • F [Ca *' li **p(r ™ )(' - I3 -a»P((' -r)-Zr-> 2. . 
, , , RT la *T [C la 

'NaCoEx ~ ' HaCaEx .max " J seal« ' lHa0 " JCaa 1 + ksat ' **P(( 1 -/) 
fscale -200, fHCo = ' , fCa0 = ~ > 7=0.35, ks 

1 (
KdEx.Na0j3 ^ ^ Ex,Ca0 
[Na*]0 * (Ca 2* ]Q 

sarcolemma/ Na* -K* pump 

IHaKpmp = 'NaKpmpjnax fha Ik 
1 + 0.1245 EXP(-0. 1 RT

m-> + 0.0052 EXPF- -J^T-J ° 

f"° = —K31 • f* J • a-'""<l%T>-' 
J+

 KdNaKNal2 , + K°H<,KJ(a 67.3 
[Na * li [K'h 

background currents 

'skj.No = SBk,2*> 
'flkj.Ca = Seki.Ca <Vm ~ECa) 
'skj.CT = Ssfcj.C/ Cm - E d ) 

Equations for INa in general and as 
they were restructured for the human atrial AP-simulations 

Lou-Rudy-equations m3 h i (vm ~ENa) Rcdrut-tured expressions 
, R T , ,[Na~]0t > 
' *„-*„-rx E»°-Z-Fln(

[Na4> " 
t r — 2043 

X = XJJ-fXjj-xj expf ; 
r X 

r / i V m < -40mV)then: 
h„ .0.135 exp(-V^~l 

4.40 
r, -0.137 a-

u 

ym - 79.23 ,„ 
1-expi-5 1 ti-3.32* 

3.22 ' Vm t.95 < 
i . 0 1212 9 5 0 5 Gating fixations of the sodium channel as they are given by the original IR-equations 

1 - exDf- and by the iNa-model used for the AP-simriations presetted 7.26 
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Equations for ICaL in general and 
as they were restructured for the human atrial AP-simulations 

I .uo-itii i iy-i'quations 
i ' ~ V- . 10 1* expf- " I 6.24 , vm - 10, 1-txp<- I 6 24 

-«is V".10 
20.57 

*" " V , . 52" 'vm -50, 1*txp( ™ ) ( . « x p f - -" ) 

0 . 0 2 0 . 0 . 0 1 9 7 " P M ™ j * y ) ' ) 

X = x„ — (Xa -x)exp< ) rx 
RehtriirtumJ expressions 

Ym * 77 , Vm - 57 1*"«UM>*""—it*-' 

rt -451.1* 

7* ic°"i' 
0.00035 

PM -P, zF Vm zF l^'h "P<\*F>-IS"1. 
XT ' 

0.00055 
'Mi 
KaL-ui a b bCa (9m-tu) 

and 
iCaLc* -Pco a b bCa, 
iCaLxg - Pa* a b bCa, 
iCaLx - Px a b bCa, 
and 
iCaLjozxi - iCaLcx -¡CaL*, * KaLx 

( twrtenianchc-.Nattcl 
as the LR-model. but 

ICXL-SCXL ° b Kd <Vm-tc.), 
F RT ln,'Cd!'l* . 

'cx P [CP1'], 
9 0.020 * 0.0197 txp(-( m*~ J2) 

29 .57 

T-type Ca2* current transient outward K* current 
IcaT = ScaT °2 b (Vm - ECa) 'tot ' Sltal "3 b(Vm-EK) 

_ 1 
za a 23.7* 6.1 -v 2S ' kQwfa 4- 0) 

Itexpf m
u5 ) = M5 0.S5 

"Qto = . a=i 2.5 + 
55 \TVi0" -9.5 7 F' -59 7 17 

1 * exp( 1 
10.« 7 «55 • iFexp,*»*20-47) 

zp = IF (Vm<0) THEN 10 - 0.«75 • Vm ELSE 10 -17.54 
i > „ = ' 1 

M \J , /Lf) Z x s 

1*exPr"7{U) kvo(a + 0) 
5 6 1 

kpiO = 3> " = U ,419 f • P * ,«.53*exp<y-*£lLL)- ^ 35.56*exp7'^) 

Uexpf^fl, 

ultrarapid delayed rectifier K* current 

I,a1 'Smax fvm °3 t> (Vm-Ex) 
10 Urn -11 V_ -15. 1 

kqiofa * P) I*expf'-PLZ11, 

Iz 1 n 065 R 065 
kd,o-3, a- -y ,0 vm-30 • vm .62 

expf m ) * expf ) 2.5* expf ) 
-8.5

 F -59 7
 17 _ , 

"55= y ;ro " kpwfaTp) 
1*expf m ) , Ym~F58x *4* ,Ym Id'. 16 21* expf 2g , 

T-
,Ym->-99:43, 1+ expf ) 27.48 
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rapid component_ of the delayed rectifier K * current slow component of Jhe delayed rectifier K* current 

<Xr = 9xr fxo fvm " (V„-EK) 
f lK1' f ' fXo = , 5 . . tvm - v - 9 

' + 22.4 > 
1 

0.00138 (V-+14.2) „ 0.00061 (Vm +38.9) 
a* ¡7 - n , • Pm 

6.9 
"ss - v 

<x,-Sx, feco o2 (Vm-E„) 
4 

fco. » Kdw. I + -
lCo**h 
1 

8q(0 (a + ß) 

kqto + " = 0.000040 (Vm-19.9) 
l-exp< ) -17.0 

0.000035 (Vm -19.9) 

"ss ' 1 + expf-^) 

inward rectifier K* current 

'*f =Ski V T.70 
1 + exp( m- ) 10.29 ' 

acetylcholine - activated K' current 

iKt'SKf ëî <0-3 + V 7+59 53 > ^ ~E*> 
'[ACh]' 17.18 
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