386 research outputs found

    Evaluation of various microgreen vegetables

    Get PDF
    As the world’s population grows, more attention needs to be paid to producing foods that provide adequate nutritional value. Microgreens, which are becoming more and more popular today, can be considered such foods. Vegetables in the microgreen category become edible within 7 to 14 days when the cotyledons are fully developed and the first true leaves appear. Compared to adult plants, microgreens have a much higher nutritional value, they contain significant amounts of vitamins (ascorbic acid, tocopherol), minerals and phytonutrients. The amount of these bioactive substances is greatly influenced by environmental factors, including humidity, temperature and light intensity. In our experiment, microgreens prepared species belonging to various plant families, such as Brassicaceae (mustard, radish), Chenopodiaceae (beetroot, Swiss chard) and Lamiaceae (basil), were evaluated based on the (Ca2++Na+)/(Mg2++K+) ion ratio, yield, dry matter and vitamin C content. Microgreens were allowed to develop up to a germination state of 90% protected from light in a germination chamber at a controlled temperature (24-25 °C) and humidity (65-70%). Following germination, after 2 to 3 days, the germination trays were placed in the experimental space of the greenhouse. General potting soil was used as the growing medium, and the seeds were of bio grade, suitable for microgreen cultivation in all cases. The crop was harvested 10 days after sowing, when plant height was 3 to 9 cm, depending on the species. The highest dry matter content ( 10%) was measured in species belonging to the family Chenopodiacea. Mustard contained an outstanding amount of vitamin C (22.66 mg/100 g). In addition, favorable biomass weights were found in the case of radish and mustard (2528 g/m2; 1831 g/m2), while the values for the other species were almost the same ( 500 g/m2). The ion ratio of the human body varies between 2.5 and 4.0, with an optimal value of approximately 1.0. This relationship can be defined as the following ratio: (Ca2++Na+)/(Mg2++K+). The ratio is determined from the occurrence values of the elements expressed in mmol/l [27]. The consumption of vegetables is of paramount importance in establishing this ratio, as their ion ratio is mostly below 1.0. This health-improving effect was proven in the case of the microgreens examined by us, as a value of about 0.40 was obtained for the different species. Overall, it can be stated that mustard showed the most favorable results for the parameters examined

    A hippokampális éleshullámok kialakulásának hálózati mechanizmusai. = Circuit mechanisms underlying the generation of hippocampal sharp wave/ripple oscillations

    Get PDF
    A hippokampális EEG egyik jellemző aktivitásmintázata az ún. éleshullám, mely fontos szerepet játszik egyes kognitív folyamatokban, mint pl. a memórianyomok bevésésében. Az in vivo kutatások az éleshullámok számos sajátságát feltárták, de a háttérben álló pontos sejtszintű mechanizmusok mindmáig tisztázatlanok. Célunk volt, hogy egy in vitro modell segítségével felderítsük, miként járulnak hozzá a különböző sejttípusok ezen hálózati események kialakulásához. Vizsgálataink feltárták, hogy az éleshullámok a hippokampusz CA3 régiójában spontán keletkeznek a piramissejtek szporadikus aktivitásának a következtében. A rekurrens kollaterálisokon keresztül jelentős aktivitási szintet ér el a piramissejtek populációs aktivitása, amelynek a parvalbumin tartalmú gátlósejtek kisülése vet véget, ami mint éleshullám jelentkezik a lokális mezőpotenciálban. Ez a mechanizmus hasonló az általunk korábban feltárt gamma oszcillációk sejtszintű folyamataihoz. Kísérleteinkben továbbá tisztáztuk, hogy a CA3 régió neuronhálózata az éleshullám-aktivitási állapotból a gamma oszcillációba azáltal tud váltani, ha az idegsejtek serkenthetőbbek lesznek, ill. a köztük lévő szinaptikus kapcsolatok legyengülnek. Az aktivitási mintázatok közti ’átkapcsolást’ pl. az acetilkolin receptorainak az ingerlése eredményezheti. A hálózati oszcillációk sejtszintű mechanizmusainak az azonosítása elősegítheti a patológiás aktivitások, mint pl. az epilepsziás rohamok kialakulási körülményeinek a megértését. | The hippocampal EEG is often decorated with so-called sharp wave-ripple (SWR) activities that were shown to play an important role in memory consolidation. In vivo studies have revealed several features of these synchronous events, yet the underlying mechanisms are still unknown. Our aim was to uncover the contribution of distinct neuron types to SWRs using an in vitro model. We found that SWRs in the CA3 region of the hippocampal slices were emerged as a consequence of sporadic activity of pyramidal cells. Through the recurrent collaterals the activity level in the pyramidal cell population reaches a threshold, when parvalbumin containing inhibitory cells are recruited. The firing of these GABAergic cells terminates the population burst. The high frequency discharge of inhibitory cells results in a deflection in local field potential detected as a SWR. These synaptic mechanisms resemble those that were uncovered for the generation of gamma oscillations. In addition, we revealed that in CA3 the SWR activity state can be transformed into gamma oscillations by increasing the excitability within the network and, in parallel, by decreasing the synaptic strengths. Such changes in network parameters can be achieved e.g. by activation of acetylcholine receptors. Revealing the cellular mechanisms underlying the synchronous activities my help to understand the changes in neuronal networks that can produces pathological activities, including epileptiform events

    Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1.

    Get PDF
    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions

    A különböző gátlósejttípusok hozzájárulása a hippokampális éleshullámok kialakulásához. = Contribution by distinct types of GABAergic interneuron to hippocampal sharp wave/ripple oscillations.

    Get PDF
    A hippokampusz neuronhálózatában spontán keletkeznek az éleshullámok, amelyek kulcsszerepet játszanak a memóriafolyamatokban. Egy in vitro modellt használva feltérképeztük az egyes idegsejttípusok bemeneti és kimeneti tulajdonságait az éleshullámok alatt. Az találtuk, hogy a legaktívabb gátlósejtek parvalbumint tartalmaztak, míg a piramissejtek többsége nem tüzelt. Meghatároztuk, hogy az éleshullámok alatti tüzelési aktivitás korrelált a serkentő szinaptikus bemenettel. Farmakológiai kísérletekkel kiderítettük, hogy a parvalbumin tartalmú gátlósejtek nagyfrekvenciás kisüléséből eredő periszomatikus gátló áramok generálják a lokális mezőpotenciálban mérhető éleshullámokat. Hasonlóan, ezek a gátlósejtek felelősek a gamma oszcillációk létrehozásáért is a hippokampális agyszeletekben. Ezen túlmenően megállapítottuk, hogy a kolinerg receptorok aktivációja, amely növeli a serkenthetőséget, de csökkenti a szinaptikus kommunikáció hatékonyságát, képes a hippokampusz alapműködését, az éleshullám-aktivitást átkapcsolni gamma oszcillációvá. Az eredményeink azt mutatják, hogy az éber állatra jellemző hálózati aktivitásokat, az éleshullámokat és a gamma oszcillációt ugyan az a hippokampális neuronhálózat generálja, amely a piramissejtek és a parvalbumin tartamú gátlósejtekből áll. | Sharp wave/ripple oscillations (SPW-Rs), that play a crucial role in memory formation, are spontaneously emerging synchronous network events in the hippocampal circuitry. Using an in vitro model, we uncovered that the input-output properties of distinct types of neurons during SPW-Rs. We found that the most active GABAergic cells were parvalbumin containing interneurons, while the vast majority of pyramidal cells was silent. Our analysis revealed that in all cell types the firing during SPW-Rs was driven by excitatory synaptic input. Pharmacological manipulations uncovered that perisomatic inhibitory currents predominantly originated from the high frequency discharge of parvalbumin containing interneurons generate the majority of the field potential that is seen as a sharp wave. Similarly, these GABAergic cells were found to generate the gamma oscillations in hippocampal slices as well. In addition, we elucidated that by cholinergic receptor activation, which increases the excitability, but reduces the efficiency of synaptic communication, the default mode of the hippocampal operation, the SPW-R state can be readily switched to gamma oscillation. Our results propose that the behaviorally relevant network activities, SPW-Rs and gamma oscillations are generated by the same neuronal circuitries in the hippocampus, comprised of pyramidal cells and parvalbumin containing interneurons

    Interneuron Types and Their Circuits in the Basolateral Amygdala

    Get PDF
    The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells

    Zöldséghajtatás

    Get PDF
    corecore