380 research outputs found

    Beneficial effects of brown fat activation on top of PCSK9 inhibition with alirocumab on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice

    Get PDF
    Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition, by increasing hepatic low density lipoprotein (LDL) receptor (LDLR) levels, has emerged as a strategy to reduce atherosclerosis by lowering circulating very low density lipoprotein (VLDL)-cholesterol. We hypothesized that the therapeutic effectiveness of PCSK9 inhibition can be increased by accelerating the generation of VLDL remnants, which typically have a high affinity for the LDLR. Therefore, we aimed to investigate whether accelerating lipolytic processing of VLDL by brown fat activation can further lower (V)LDL and reduce atherosclerosis on top of PCSK9 inhibition. APOE*3-Leiden.CETP mice were fed a Western-type diet and treated with the anti-PCSK9 antibody alirocumab or saline. After 2 weeks, both groups of mice were randomized to receive either the selective beta 3-adrenergic receptor (AR) agonist CL316,243 to activate brown fat or saline for 3 additional weeks to evaluate VLDL clearance or 12 additional weeks to analyze atherosclerosis development. beta 3-AR agonism and alirocumab combined decreased (V)LDL-cholesterol compared to alirocumab alone, which was explained by an accelerated plasma clearance of VLDL-cholesteryl esters that were mainly taken up by the liver. In addition, the combination promoted the transfer of VLDL-phospholipids to HDL to a higher extent than alirocumab alone, accompanied by higher plasma HDL-cholesterol levels and increased cholesterol efflux capacity. Consequently, combination treatment largely reduced atherosclerotic lesion area compared to vehicle. Together, beta 3-AR agonism enhances the lipoprotein-modulating effects of alirocumab to further improve dyslipidemia and non-significantly further attenuate atherosclerosis development. Our findings demonstrate that brown fat activation may enhance the therapeutic effects of PCSK9 inhibition in dyslipidemia.Diabetes mellitus: pathophysiological changes and therap

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin Gκ monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) µg/ml; D-KRd, 277.2 (164.0-341.8) µg/ml; combined, 256.8 (125.8-435.5) µg/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) µg/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) µg/ml; D-KRd, 575.1 (237.9-825.5) µg/ml; combined, 639.2 (57.7-1110.7) µg/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) µg/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin Gκ monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) µg/ml; D-KRd, 277.2 (164.0-341.8) µg/ml; combined, 256.8 (125.8-435.5) µg/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) µg/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) µg/ml; D-KRd, 575.1 (237.9-825.5) µg/ml; combined, 639.2 (57.7-1110.7) µg/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) µg/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
    corecore