4,419 research outputs found

    æ–°ćŽäœœć“ : ă‚žăƒ§ăƒ«ă‚žăƒ„ăƒ»ăƒ‰ăƒ»ăƒ©ăƒ»ăƒˆă‚„ăƒŒăƒ«ă€Šè–ăƒˆăƒžă‚č》

    Get PDF
    We present a tomographic technique making use of a gigaelectronvolt electron beam for the determination of the material budget distribution of centimeter-sized objects by means of simulations and measurements. In both cases, the trajectory of electrons traversing a sample under test is reconstructed using a pixel beam-telescope. The width of the deflection angle distribution of electrons undergoing multiple Coulomb scattering at the sample is estimated. Basing the sinogram on position-resolved estimators enables the reconstruction of the original sample using an inverse radon transform. We exemplify the feasibility of this tomographic technique via simulations of two structured cubes—made of aluminium and lead—and via an in-beam measured coaxial adapter. The simulations yield images with FWHM edge resolutions of (177 ± 13) Όm and a contrast-to-noise ratio of 5.6 ± 0.2 (7.8 ± 0.3) for aluminium (lead) compared to air. The tomographic reconstruction of a coaxial adapter serves as experimental evidence of the technique and yields a contrast-to-noise ratio of 15.3 ± 1.0 and a FWHM edge resolution of (117 ± 4) Όm

    The directed flow maximum near c_s=0

    Get PDF
    We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the E(Lab)=40AGeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, E(Lab)=10AGeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, E(Lab)=40AGeV. We show the effect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at E(Lab)=40AGeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.Comment: 10 pages, 4 figures; plot of p(e) at various specific entropies shows why mixed phase is not soft at AGS energ

    Crystal Structure of the N-Terminal Domain of Nup358/RanBP2

    Get PDF
    Key steps in mRNA export are the nuclear assembly of messenger ribonucleoprotein particles (mRNPs), the translocation of mRNPs through the nuclear pore complex (NPC), and the mRNP remodeling events at the cytoplasmic side of the NPC. Nup358/RanBP2 is a constituent of the cytoplasmic filaments of the NPC specific to higher eukaryotes and provides a multitude of binding sites for the nucleocytoplasmic transport machinery. Here, we present the crystal structure of the Nup358 N-terminal domain (NTD) at 0.95 Å resolution. The structure reveals an α-helical domain that harbors three central tetratricopeptide repeats (TPRs), flanked on each side by an additional solvating amphipathic α helix. Overall, the NTD adopts an unusual extended conformation that lacks the characteristic peptide-binding groove observed in canonical TPR domains. Strikingly, the vast majority of the NTD surface exhibits an evolutionarily conserved, positive electrostatic potential, and we demonstrate that the NTD possesses the capability to bind single-stranded RNA in solution. Together, these data suggest that the NTD contributes to mRNP remodeling events at the cytoplasmic face of the NPC

    ρ(770)0\rho(770)^0, K∗(892)0^*(892)^0 and f0(980)_{0}(980) Production in Au-Au and pp Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    Preliminary results on ρ(770)0→π+π−\rho(770)^0 \to \pi^{+}\pi^{-}, K∗(892)0→π^{*}(892)^{0} \to \piK and f0(980)→π+π−f_{0}(980) \to \pi^{+}\pi^{-} production using the mixed-event technique are presented. The measurements are performed at mid-rapidity by the STAR detector in sNN\sqrt{s_{NN}}= 200 GeV Au-Au and pp interactions at RHIC. The results are compared to different measurements at various energies.Comment: 4 pages, 6 figures. Talk presented at Quark Matter 2002, Nantes, France, July 18-24, 2002. To appear in the proceedings (Nucl. Phys. A

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    Charged-Particle Multiplicity in Proton-Proton Collisions

    Full text link
    This article summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of sqrt(s). Feynman scaling, KNO scaling, as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of two or more negative binomial distributions are discussed. Moreover, similarities between the energy dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions are studied. Finally, various predictions for pseudorapidity densities, average multiplicities in full phase space, and multiplicity distributions of charged particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10 TeV, and 14 TeV are summarized and compared.Comment: Invited review for Journal of Physics G -- version 2: version after referee's comment

    Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies

    Full text link
    The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/cc are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission takes place from the whole space-time domain available for the system evolution, but not from the thin ''freeze-out hypersurface", adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, ptp_t, are predominantly produced at the early stages of the reaction. The low ptp_t-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing ptp_t, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/cc is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the Physical Review
    • 

    corecore