164 research outputs found

    Discrepancy between experimental and theoretical β\beta-decay rates resolved from first principles

    Full text link
    β\beta-decay, a process that changes a neutron into a proton (and vice versa), is the dominant decay mode of atomic nuclei. This decay offers a unique window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and the synthesis of the elements in the Universe. For 50 years, a central puzzle has been that observed β\beta-decay rates are systematically smaller than theoretical predictions. This was attributed to an apparent quenching of the fundamental coupling constant gAg_A \simeq 1.27 in the nucleus by a factor of about 0.75 compared to the β\beta-decay of a free neutron. The origin of this quenching is controversial and has so far eluded a first-principles theoretical understanding. Here we address this puzzle and show that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β\beta-decays from light to heavy nuclei. Our results are consistent with experimental data, including the pioneering measurement for 100^{100}Sn. These theoretical advances are enabled by systematic effective field theories of the strong and weak interactions combined with powerful quantum many-body techniques. This work paves the way for systematic theoretical predictions for fundamental physics problems. These include the synthesis of heavy elements in neutron star mergers and the search for neutrino-less double-β\beta-decay, where an analogous quenching puzzle is a major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure

    Conseil et développement de carrière tout au long de la vie

    Get PDF
    Cet article analyse la nature et la démarche du conseil en carrière. En outre, il décrit un schéma de développement humain défini comme « développement de carrière tout au long de la vie », qui sert de base au conseil en carrière. Il présente alors un modèle théorique du conseil en carrière construit à partir de cette perspective, puis un travail de recherche utilisant ce modèle, et focalisé sur le processus et sur les effets du conseil en carrière.Qu’est-ce que le conseil en carrière ? Est-il différent des autres formes de conseil individualisé ? Est-il identique ? Existe-t-il des recouvrements avec d’autres formes de conseil ? Ces questions se trouvent posées de plus en plus souvent à l’heure actuelle aux Etats-Unis alors même que des tentatives de clarification du conseil en carrière se manifestent (Anderson & Niles, 1995 Bluesmen & Spengler, 1995 ; Hackett, 1993 ; Rak & O’Dell, 1994 ; Swanson, 1995 ; Walsh & Srsic, 1995). Trois problèmes apparaissent comme centraux dans le cadre de cette discussion sur le conseil en carrière. Le premier problème est celui de la nature du conseil en carrière : quelles sont ses caractéristiques et qualités intrinsèques ? Quels processus psychologiques implique-t-il ? En second lieu, se pose le problème de sa structure : quelle est sa configuration, dans quel ordre se succèdent les différentes étapes et sous-étapes, et quelles relations entretiennent-elles entre elles ? Le troisième problème est celui des effets du conseil en carrière : quelles sont les données dont on dispose sur les effets du conseil en carrière ? Quelles sont les relations entre la démarche du conseil en carrière et ses résultats ? Cet article aborde successivement chacun de ces problèmes.The nature and structure of career counseling are explored. In addition, a perspective of human development called life career development is discribed that serves as a foundation for career counseling. Then a model for career counseling based on this perspective is presented followed by a presentation of research using the model that focuses on career counseling process and outcomes

    c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease

    Get PDF
    Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of P

    Signal transduction events induced by extracellular guanosine 5′triphosphate in excitable cells

    Get PDF
    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5′triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50′00 ng ml−1 of nerve growth factor, whereas serum starvation causes C2C12 cells to differentiate into myotubes showing functional excitation–contraction coupling, with the expression of myosin heavy chain proteins. Our results show that GTP enhances the differentiation of both of these excitable cell lines. The early events in guanosine-based purine signal transduction appear to involve an increase in intracellular Ca2+ levels and membrane hyperpolarization. We further investigated the early activation of extracellular-regulated kinases and phosphoinositide 3-kinase in GTP-stimulated PC12 and C2C12 cells, respectively. We found that GTP promotes the activation of both kinases. Together, our results suggest that, even if there are some differences in the signalling pathways, GTP-induced differentiation in both cell lines is dependent on an increase in intracellular Ca2+

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    Get PDF
    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques

    Non-adenine based purines accelerate wound healing

    Get PDF
    Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5′.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8′.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting

    Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP

    Get PDF
    Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3-5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} NωN^{\omega } \end{document}-Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP

    c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease

    Get PDF
    Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD

    Effect of SIMPESA Career Application on Student Self-Efficacy in Selecting majors

    Get PDF
    This research aims to examine the effect of the use of Android-based career application on the self-efficacy of students in the selection of majors in high school. This research is a pre-experiment research on high school students in Makassar city, South Sulawesi. This research begins with development research and has been produced in previous research an Android-based career application named SIMPESA (high school student interest) that has been tested the validity and acceptance by psychologists and ICT experts and counseling counselor (counselor) to assist students in choosing majors in senior high school. The population in this research was all students of State Senior High School 5 Makassar-South Sulawesi class X. The sampling technique was using proportional random sampling involving 30 students of class X. The research design used is the use of pre-experimental design. The research instrument was using career decision making self-efficacy scale and focus group discussion. While the data analysis technique used t test. The results showed that there was a significant increase in pre-test and post-test averages in the trial group, where the post-test average score was higher than the pre-test average score. The conclusion of this research is SIMPESA android based career application have positive influence to self-efficacy students in selecting majors in senior high school
    corecore