12 research outputs found

    Molecular and cellular characterization of midbrain dopaminergic neuron development

    Get PDF
    Midbrain dopaminergic (mDA) development is a complex yet highly controlled mechanistic process that is conserved across species. The understanding of these molecular details can open windows to new avenues of therapeutic medicine. Parkinson’s disease (PD) is a debilitating neurological disorder that to date has no cure or established cause. With various aspects of mDA development being revealed, the aim for a permanent treatment of PD itself is getting closer. Included within this thesis are four papers and two manuscripts covering diverse points of mDA neuron development and PD. In Paper I we explore the role of transcription factor Pbx1 to promote mDA differentiation through activation of Pitx3 and repression of Onecut2. Pbx1 is also involved in protection from oxidative stress through Nfe2l1, an important aspect of PD. In Paper II we explore the cellular diversity of the ventral midbrain through the use of single-cell RNA-sequencing. The cellular transcriptional profiles aid in revealing the mDA neuron lineage and a cross-species comparison of mouse and human. To conclude, we use molecular tools to evaluate stem-cell derived mDA preparations for cell replacement therapy (CRT) in PD. In Paper III we review the current knowledge of Wnt signaling related to mDA development and further investigate the human single-cell data set from Paper II for other possible Wnt components that have yet to be explored for their role in development. In Paper IV we explore the composition of the mDA cellular environment using RNA-sequencing data. Here we apply a novel approach to gain insight to specific contributions from various cell types to the extracellular matrix, its modulators, and signaling ligands. We find a transcription factor network centered around Arntl1 in radial glia type 1 cells, a putative progenitor to the neuronal lineage. In Paper V we investigate the matricellular protein R-spondin 2. As a Wnt signaling activator, we show R-spondin 2 has a role in mDA differentiation when applied to embryonic stem cell differentiation protocols. This has direct translational impact in CRT for PD. In Paper VI we explore the role of Wnt/planar cell polarity signaling in midbrain development. Specifically, we elucidate the roles of Ror2 and Vangl2 in mDA development and their participation in morphogenesis and neurogenesis. In conclusion, this thesis encompasses research on midbrain development from molecular details at a single-cell level to cellular components affecting global developmental processes. Here I present findings to be included towards a greater understanding of midbrain development and novel ideas relevant to translational research in CRT for PD

    Molecular analysis of the midbrain dopaminergic niche during neurogenesis

    Get PDF
    Midbrain dopaminergic (mDA) neurons degenerate in Parkinson’s disease and are one of the main targets for cell replacement therapies. However, a comprehensive view of the signals and cell types contributing to mDA neurogenesis is not yet available. By analyzing the transcriptome of the mouse ventral midbrain at a tissue and single-cell level during mDA neurogenesis we found that three recently identified radial glia types 1-3 (Rgl1-3) contribute to different key aspects of mDA neurogenesis. While Rgl3 expressed most extracellular matrix components and multiple ligands for various pathways controlling mDA neuron development, such as Wnt and Shh, Rgl1-2 expressed most receptors. Moreover, we found that specific transcription factor networks explain the transcriptome and suggest a function for each individual radial glia. A network controlling neurogenesis was found in Rgl1, progenitor maintenance in Rgl2 and the secretion of factors forming the mDA niche by Rgl3. Our results thus uncover a broad repertoire of developmental signals expressed by each midbrain cell type during mDA neurogenesis. Cells identified for their emerging importance are Rgl3, a niche cell type, and Rgl1, a neurogenic progenitor that expresses ARNTL, a transcription factor that we find is required for mDA neurogenesis

    Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.

    Get PDF
    Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.All authors were supported by EU FP7 grant DDPDGENES. S.L. was supported by European Research Council grant 261063 (BRAINCELL), Knut and Alice Wallenberg Foundation grant 2015.0041, Swedish Research Council (STARGET), and the Swedish Foundation for Strategic Research (RIF14-0057). A.Z. was supported by the Human Frontier Science Program. E.A. was supported by Swedish Research Council (VR projects: 2011-3116 and 2011-3318), Swedish Foundation for Strategic Research (SRL program), and Karolinska Institutet (SFO Thematic Center in Stem cells and Regenerative Medicine). E.A. and R.A.B. were supported by the EU FP7 grant NeuroStemcellRepair. R.A.B. was also supported by an NIHR Biomedical Research Centre award to the University of Cambridge/Addenbrookes Hospital. iCell dopaminergic neurons were a generous gift from Cellular Dynamics International. Single-cell RNA-seq servic0es were provided by the Eukaryotic Single-cell Genomics facility and the National Genomics Infrastructure at Science for Life Laboratory.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cell.2016.09.02

    WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis.

    Get PDF
    WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.We thank Nadia Wänn for maintenance of mice colonies; the members of Bryja and Arenas lab for their help and suggestions; Martin Häring for help with in situ analysis; Johnny Söderlund and Alessandra Nanni for their technical and secretarial assistance; and the CLICK imaging facility at Karolinska Institutet for technical support. We thank MEYS CR for support to the following core facilities: Proteomics (CIISB research infrastructure project LM2015043), cellular imaging at CEITEC institution at Masaryk University (LM2015062 Czech-BioImaging) Czech Centre for Phenogenomics (LM2015040), Higher quality and capacity of transgenic model breeding (by MEYS and ERDF, OP RDI CZ.1.05/2.1.00/19.0395), Czech Centre for Phenogenomics: developing towards translation research (by MEYS and ESIF, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789). The collaboration between Masaryk University and Karolinska Institutet (KI-MU program), was co-financed by the European Social Fund and the state budget of the Czech Republic (CZ.1.07/2.3.00/20.0180). Funding to the VB lab was obtained from Neuron Fund for Support of Science (23/2016), and Czech Science Foundation (GA17-16680S). Work in the EA lab was supported by the Swedish Research Council (VR projects: DBRM, 2011-3116, 2011-3318 and 2016-01526), Swedish Foundation for Strategic Research (SRL program and SLA SB16-0065), European Commission (NeuroStemcellRepair), Karolinska Institutet (SFO Strat Regen, Senior grant 2018), Hjärnfonden (FO2015:0202 and FO2017-0059) and Cancerfonden (CAN 2016/572). Research in the JCV lab was supported by Karolinska Institutet Foundations. KK was supported by Masaryk University (MUNI/E/0965/2016). DP and ZZ were supported by the CEITEC 2020 (LQ1601) project from MEYS CR

    Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

    Get PDF
    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale

    Molecular architecture of the developing mouse brain.

    No full text
    The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system

    MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus.

    No full text
    The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.(LM2018129 funded by MEYS CR), Czech Centre for Phenogenomics (LM2015040), Higher quality and capacity of transgenic model breeding (by MEYS and ERDF, OP RDI CZ.1.05/2.1.00/19.0395), Czech Centre for Phenogenomics: developing towards translation research (by MEYS and ESIF, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789), BCH viral core for AAV production. The collaboration between Masaryk University and Karolinska Institutet (KI-MU program), was co-financed by the European Social Fund and the state budget of the Czech Republic (CZ.1.07/2.3.00/20.0180). Funding to the VB lab was obtained from Neuron Fund for Support of Science (23/2016), and Czech Science Foundation (GA17- 16680S). Work in the EA lab was supported by the Swedish Research Council (VR projects: DBRM, 2011-3116, 2011-3318 and 2016-01526), Swedish Foundation for Kaiser et al.,Strategic Research (SRL program and SLA SB16-0065), European Commission (NeuroStemcellRepair), Karolinska Institutet (SFO Strat Regen, Senior grant 2018), Hjärnfonden (FO2015:0202 and FO2017-0059) and Cancerfonden (CAN 2016/572) foundations. KK was supported by Masaryk University (MUNI/E/0965/2016). RvA acknowledges funding support from the University of Amsterdam (MacGillavry fellowship), KWF Kankerbestrijding (Dutch Cancer Society, career development award ANW 2013-6057) and NWO (Netherlands Science Foundation, VIDI 864.13.002). Work in the OM lab is supported by the Czech Science Foundation (18- 00514S). ZK acknowledges funding support from GACR 18-20759S. RA Barker is supported by an NIHR funded Biomedical Research Centre at Cambridge University Hospital and the WT-MRC Cambridge Stem Cell Institute. The Lehtinen laboratory was supported by the Reagan Sloane Shanley Research Internship (ND), OFD/BTREC/CTREC Faculty Development Fellowship Award (RMF), NIH R01 NS088566 (MKL), the New York Stem Cell Foundation (MKL); and BCH IDDRC 1U54HD090255. MK Lehtinen is a New York Stem Cell Foundation – Robertson Investigator
    corecore