115 research outputs found

    The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling

    Get PDF
    The range and the meaning of the effective elastic thickness (EET) in continental areas have been subject to controversy over the last two decades. Here we take advantage of the new data set from the Hi-CLIMB seismological experiment to re-estimate the EET of the India Plate along a south-north profile extending from the Ganges basin to central Tibet. Receiver functions give a high-resolution image of the base of the foreland basin at similar to 5 km depth and constrain the crustal thickness, which increases northwards from similar to 35 km beneath the indo-gangetic plain to similar to 70 km in southern Tibet. Together with available data sets including seismic profiles, seismological images from both INDEPTH and HIMNT experiments, deep well measurements and Bouguer anomaly profiles, we interpret this new image with 2-D thermomechanical modelling solutions, using different type of crustal and mantle rheologies. We find that (1) the EET of the India Plate decreases northwards from 60-80 to 20-30 km as it is flexed down beneath Himalaya and Tibet, due to thermal and flexural weakening; (2) the only resistant layer of the India Plate beneath southern Tibet is the upper mantle, which serves as a support for the topographic load and (3) the most abrupt drop in the EET, located around 200 km south of the MFT, is associated with a gradual decoupling between the crust and the mantle. We show that our geometrical constraints do not allow to determine if the upper and lower crust are coupled or not. Our results clearly reveal that a rheology with a weak mantle is unable to explain the geometry of the lithosphere in this region, and they are in favour of a rheology in which the mantle is strong

    Origin of internal flow structures in columnar-jointed basalt from Hrepphólar, Iceland: I. Textural and geochemical characterization

    Get PDF
    Basalt columns from Hrepphólar (Iceland) show distinct internal structures produced by alternating brighter and darker bands through the column, locally exhibiting viscous fingering features. Here, we present geochemical and petrographic data retrieved from analyses of major and trace elements and mineral chemistry from a cross section of a single basaltic column. This is combined with petrographic descriptions and data on crystal size distributions of plagioclase. We use our data from Hrepphólar to test four existing models that have been proposed to explain banded structures inside columns: (1) deuteric alteration, (2) double-diffusive convection, (3) constitutional supercooling, and (4) crystallization-induced melt migration. We find that the internal structures at Hrepphólar represent primary magmatic features, because approximately 20% of the observed structures crosscut the column-bounding fracture for each meter along the main axis of the column. These features must thus have been formed before the column-delimiting crack advanced. Major and trace element analyses show small but significant variations across the column and strong correlation between oxides like FeO and TiO2, as well as K2O and P2O5. The geochemical variations correlate with the presence of darker/brighter bands visible on a polished surface and can be explained by a variation in the modal proportions of the main phenocryst phases (specifically variable plagioclase and titanomagnetite content). This banding enhances the internal structures apparent in the polished cross section from columnar joints at Hrepphólar. The measured variations in major and trace element geochemistry, as well as mineral chemistry, are too small to distinguish between the proposed band-forming models. Plagioclase crystal size distributions, however, display a systematic change across the column that is consistent with late-stage migration of melt inside the column (i.e., the crystallization induced melt migration hypothesis). The central part of the columns have plagioclases indicative of slow cooling and these are also more steeply oriented (i.e., subparallel to the column axis) compared with plagioclases present in the more rapidly cooled edges. This redistribution of melt within individual columns may significantly affect the cooling rate of columnar-jointed lava flows and intrusion

    A Call to Action for a Comprehensive Earthquake Education Policy in Nepal

    Get PDF
    Earthquakes in Nepal are among the most damaging natural hazards, claiming many lives and causing more widespread destruction than any other natural hazard. Yet, due to other difficulties and challenges, earthquakes are at the forefront of people’s attention only after major events, such as the 1934 or 2015 earthquakes. As a result, current preparedness of the population to earthquakes is far below the optimal level. This calls for an immediate and widespread educational effort to increase awareness and to raise the current young generation responsibly. After describing the current status of earthquake education at various school levels in Nepal, we here propose a series of actions to undertake towards an official education policy, starting from full openness and use of languages, via coordination and teacher's training, to the content, frequency and style of curriculum. We conclude on a timeline of actions, which have various lengths but should start today. We hope that by sharing our researcher and educational experience and thoughts, the actual preparation of the earthquake education policy for Nepal will start being developed under a dedicated team. Elements of the proposal presented here can be used and adapted to other regions at risk around the world

    Incorporating metamorphism in geodynamic models: the mass conservation problem

    Get PDF
    Geodynamic models incorporating metamorphic phase transformations almost invariably assume the validity of the Boussinesq approximation that violates conservation of mass. In such models metamorphic density changes take place without volumetric effects. We assess the impact of the Boussinesq approximation by comparing models of orogeny accompanied by lower crustal eclogitization both with and without the approximation. Our results demonstrate that the approximation may cause errors approaching 100 per cent in characteristic measures of orogenic shape. Mass conservation errors in Boussinesq models amplify with model time. Mass conservative models of metamorphism are therefore essential to understand long-term tectonic evolution and to assess the importance of the different geodynamic processe
    corecore