30 research outputs found

    Design and selection of novel C1s inhibitors by in silico and in vitro approaches

    Get PDF
    The complement system is associated with various diseases such as inflammation or autoimmune diseases. Complement-targeted drugs could provide novel therapeutic intervention against the above diseases. C1s, a serine protease, plays an important role in the CS and could be an attractive target since it blocks the system at an early stage of the complement cascade. Designing C1 inhibitors is particularly challenging since known inhibitors are restricted to a narrow bioactive chemical space in addition selectivity over other serine proteases is an important requirement. The typical architecture of a small molecule inhibitor of C1s contains an amidine (or guanidine) residue, however, the discovery of non-amidine inhibitors might have high value, particularly if novel chemotypes and/or compounds displaying improved selectivity are identified. We applied various virtual screening approaches to identify C1s focused libraries that lack the amidine/guanidine functionalities, then the in silico generated libraries were evaluated by in vitro biological assays. While 3D structure-based methods were not suitable for virtual screening of C1s inhibitors, and a 2D similarity search did not lead to novel chemotypes, pharmacophore model generation allowed us to identify two novel chemotypes with submicromolar activities. In three screening rounds we tested altogether 89 compounds and identified 20 hit compounds (<10 ΌM activities; overall hit rate: 22.5%). The highest activity determined was 12 nM (1,2,4-triazole), while for the newly identified chemotypes (1,3-benzoxazin-4-one and thieno[2,3-d][1,3]oxazin-4-one) it was 241 nM and 549 nM, respectively. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    A Chemocentric Approach to the Identification of Cancer Targets

    Get PDF
    A novel chemocentric approach to identifying cancer-relevant targets is introduced. Starting with a large chemical collection, the strategy uses the list of small molecule hits arising from a differential cytotoxicity screening on tumor HCT116 and normal MRC-5 cell lines to identify proteins associated with cancer emerging from a differential virtual target profiling of the most selective compounds detected in both cell lines. It is shown that this smart combination of differential in vitro and in silico screenings (DIVISS) is capable of detecting a list of proteins that are already well accepted cancer drug targets, while complementing it with additional proteins that, targeted selectively or in combination with others, could lead to synergistic benefits for cancer therapeutics. The complete list of 115 proteins identified as being hit uniquely by compounds showing selective antiproliferative effects for tumor cell lines is provided

    Asymmetric Total Synthesis of d

    No full text

    Cytotoxic Activity of α-Aminophosphonic Derivatives Coming from the Tandem Kabachnik–Fields Reaction and Acylation

    No full text
    Encouraged by the significant cytotoxic activity of simple α-aminophosphonates, a molecular library comprising phosphonoylmethyl- and phosphinoylmethyl-α-aminophosphonates, a tris derivative, and N-acylated species was established. The promising aminophosphonate derivatives were subjected to a comparative structure–activity analysis. We evaluated 12 new aminophosphonate derivatives on tumor cell cultures of different tissue origins (skin, lung, breast, and prostate). Several derivatives showed pronounced, even selective cytostatic effects. According to IC50 values, phosphinoylmethyl-aminophosphonate derivative 2e elicited a significant cytostatic effect on breast adenocarcinoma cells, but it was even more effective against prostatic carcinoma cells. Based on our data, these new compounds exhibited promising antitumor activity on different tumor types, and they might represent a new group of alternative chemotherapeutic agents

    Cardioprotective Effect of Novel Matrix Metalloproteinase Inhibitors

    No full text
    Background: We recently developed novel matrix metalloproteinase-2 (MMP-2) inhibitor small molecules for cardioprotection against ischemia/reperfusion injury and validated their efficacy in ischemia/reperfusion injury in cardiac myocytes. The aim of the present study was to test our lead compounds for cardioprotection in vivo in a rat model of acute myocardial infarction (AMI) in the presence or absence of hypercholesterolemia, one of the major comorbidities affecting cardioprotection. Methods: Normocholesterolemic adult male Wistar rats were subjected to 30 min of coronary occlusion followed by 120 min of reperfusion to induce AMI. MMP inhibitors (MMPI)-1154 and -1260 at 0.3, 1, and 3 &micro;mol/kg, MMPI-1248 at 1, 3, and 10 &micro;mol/kg were administered at the 25th min of ischemia intravenously. In separate groups, hypercholesterolemia was induced by a 12-week diet (2% cholesterol, 0.25% cholic acid), then the rats were subjected to the same AMI protocol and single doses of the MMPIs that showed the most efficacy in normocholesterolemic animals were tested in the hypercholesterolemic animals. Infarct size/area at risk was assessed at the end of reperfusion in all groups by standard Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial microvascular obstruction (MVO) was determined by thioflavine-S staining. Results: MMPI-1154 at 1 &micro;mol/kg, MMPI-1260 at 3 &micro;mol/kg and ischemic preconditioning (IPC) as the positive control reduced infarct size significantly; however, this effect was not seen in hypercholesterolemic animals. MVO in hypercholesterolemic animals decreased by IPC only. Conclusions: This is the first demonstration that MMPI-1154 and MMPI-1260 showed a dose-dependent infarct size reduction in an in vivo rat AMI model; however, single doses that showed the most efficacy in normocholesterolemic animals were abolished by hypercholesterolemia. The further development of these promising cardioprotective MMPIs should be continued with different dose ranges in the study of hypercholesterolemia and other comorbidities
    corecore