31 research outputs found

    The Whole Antarctic Ocean Model (WAOM v1.0): Development and evaluation

    Get PDF
    The Regional Ocean Modeling System (ROMS), including an ice shelf component, has been applied on a circum-Antarctic domain to derive estimates of ice shelf basal melting. Significant improvements made compared to previous models of this scale are the inclusion of tides and a horizontal spatial resolution of 2 km, which is sufficient to resolve on-shelf heat transport by bathymetric troughs and eddy-scale circulation. We run the model with ocean–atmosphere–sea ice conditions from the year 2007 to represent nominal present-day climate. We force the ocean surface with buoyancy fluxes derived from sea ice concentration observations and wind stress from ERA-Interim atmospheric reanalysis. Boundary conditions are derived from the ECCO2 ocean state estimate; tides are incorporated as sea surface height and barotropic currents at the open boundary. We evaluate model results using satellite-derived estimates of ice shelf melting and established compilations of ocean hydrography. The Whole Antarctic Ocean Model (WAOM v1.0) qualitatively captures the broad scale difference between warm and cold regimes as well as many of the known characteristics of regional ice–ocean interaction. We identify a cold bias for some warm-water ice shelves and a lack of high-salinity shelf water (HSSW) formation. We conclude that further calibration and development of our approach are justified. At its current state, the model is ideal for addressing specific, process-oriented questions, e.g. related to tide-driven ice shelf melting at large scales

    Vertical Processes and Resolution Impact Ice Shelf Basal Melting: A Multi-Model Study

    Get PDF
    Understanding ice shelf–ocean interaction is fundamental to projecting the Antarctic ice sheet response to a warming climate. Numerical ice shelf–ocean models are a powerful tool for simulating this interaction, yet are limited by inherent model weaknesses and scarce observations, leading to parameterisations that are unverified and unvalidated below ice shelves. We explore how different models simulate ice shelf–ocean interaction using the 2nd Ice Shelf–Ocean Model Intercomparison Project (ISOMIP+) framework. Vertical discretisation and resolution of the ocean model are shown to have a significant effect on ice shelf basal melt rate, through differences in the distribution of meltwater fluxes and the calculation of thermal driving. Z-coordinate models, which generally have coarser vertical resolution in ice shelf cavities, may simulate higher melt rates compared to terrain-following coordinate models. This is due to the typically higher resolution of the ice–ocean boundary layer region in terrain following models, which allows better representation of a thin meltwater layer, increased stratification, and as a result, better insulation of the ice from water below. We show that a terrain-following model, a z-level coordinate model and a hybrid approach give similar results when the effective vertical resolution adjacent to the ice shelf base is similar, despite each model employing different paradigms for distributing meltwater fluxes and sampling tracers for melting. We provide a benchmark for thermodynamic ice shelf–ocean interaction with different model vertical coordinates and vertical resolutions, and suggest a framework for any future ice shelf–ocean thermodynamic parameterisations

    Modelling the Response of Ice Shelf Basal Melting to Different Ocean Cavity Environmental Regimes

    Get PDF
    We present simulation results from a version of the Regional Ocean Modeling System modified for ice shelf/ocean interaction, including the parameterisation of basal melting by molecular diffusion alone. Simulations investigate the differences in melting for an idealised ice shelf experiencing a range of cold to hot ocean cavity conditions. Both the pattern of melt and the location of maximum melt shift due to changes in the buoyancy-driven circulation, in a different way to previous studies. Tidal forcing increases both the circulation strength and melting, with the strongest impact on the cold cavity case. Our results highlight the importance of including a complete melt parameterisation and tidal forcing. In response to the 2.4 degrees C ocean warming initially applied to a cold cavity ice shelf, we find that melting will increase by about an order of magnitude (24 x with tides and 41 x without tides)

    Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media

    Get PDF
    Cylindrical block copolymer micelles have shown considerable promise in various fields of biomedical research. However, unlike spherical micelles and vesicles, control over their dimensions in biologically relevant solvents has posed a key challenge that potentially limits in depth studies and their optimization for applications. Here, we report the preparation of cylindrical micelles of length in the wide range of 70 nm to 1.10 μm in aqueous media with narrow length distributions (length polydispersities <1.10). In our approach, an amphiphilic linear-brush block copolymer, with high potential for functionalization, was synthesized based on poly­(ferrocenyldimethylsilane)-<i>b</i>-poly­(allyl glycidyl ether) (PFS-<i>b</i>-PAGE) decorated with triethylene glycol (TEG), abbreviated as PFS-<i>b</i>-(PEO-<i>g</i>-TEG). PFS-<i>b</i>-(PEO-<i>g</i>-TEG) cylindrical micelles of controlled length with low polydispersities were prepared in <i>N</i>,<i>N</i>-dimethylformamide using small seed initiators via living crystallization-driven self-assembly. Successful dispersion of these micelles into aqueous media was achieved by dialysis against deionized water. Furthermore, B–A–B amphiphilic triblock comicelles with PFS-<i>b</i>-poly­(2-vinylpyridine) (P2VP) as hydrophobic “B” blocks and hydrophilic PFS-<i>b</i>-(PEO-<i>g</i>-TEG) “A” segments were prepared and their hierarchical self-assembly in aqueous media studied. It was found that superstructures formed are dependent on the length of the hydrophobic blocks. Quaternization of P2VP was shown to cause the disassembly of the superstructures, resulting in the first examples of water-soluble cylindrical multiblock comicelles. We also demonstrate the ability of the triblock comicelles with quaternized terminal segments to complex DNA and, thus, to potentially function as gene vectors

    Determinants of anxiety in elite athletes:a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: To identify and quantify determinants of anxiety symptoms and disorders experienced by elite athletes. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Five online databases (PubMed, SportDiscus, PsycINFO, Scopus and Cochrane) were searched up to November 2018 to identify eligible citations. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Articles were included if they were published in English, were quantitative studies and measured a symptom-level anxiety outcome in competing or retired athletes at the professional (including professional youth), Olympic or collegiate/university levels. RESULTS AND SUMMARY: We screened 1163 articles; 61 studies were included in the systematic review and 27 of them were suitable for meta-analysis. Overall risk of bias for included studies was low. Athletes and non-athletes had no differences in anxiety profiles (d=-0.11, p=0.28). Pooled effect sizes, demonstrating moderate effects, were identified for (1) career dissatisfaction (d=0.45; higher anxiety in dissatisfied athletes), (2) gender (d=0.38; higher anxiety in female athletes), (3) age (d=-0.34; higher anxiety for younger athletes) and (4) musculoskeletal injury (d=0.31; higher anxiety for injured athletes). A small pooled effect was found for recent adverse life events (d=0.26)-higher anxiety in athletes who had experienced one or more recent adverse life events. CONCLUSION: Determinants of anxiety in elite populations broadly reflect those experienced by the general population. Clinicians should be aware of these general and athlete-specific determinants of anxiety among elite athletes

    Eddy and tidal driven basal melting of the Totten and Moscow University ice shelves

    Get PDF
    The mass loss from the neighboring Totten and Moscow University ice shelves is accelerating and may raise global sea levels in coming centuries. Totten Glacier is mostly based on bedrock below sea level, and so is vulnerable to warm water intrusion reducing its ice shelf buttressing. The mechanisms driving the ocean forced sub-ice-shelf melting remains to be further explored. In this study, we simulate oceanic-driven ice shelf melting of the Totten (TIS) and Moscow University ice shelves (MUIS) using a high spatiotemporal resolution model that resolves both eddy and tidal processes. We selected the year 2014 as representative of the period 1992 to 2017 to investigate how basal melting varies on spatial and temporal scales. We apply the wavelet coherence method to investigate the interactions between the two ice shelves in time-frequency space and hence estimate the contributions from tidal (&lt;1.5 days) and eddy (2-35 days) components of the ocean heat transport to the basal melting of each ice shelf. In our simulation, the 2014 mean basal melt rate for TIS is 6.7 m yr-1 (42 Gt yr-1) and 9.7 m yr-1 (52 Gt yr-1) for MUIS. We find high wavelet coherence in the eddy dominated frequency band between the two ice shelves over almost the whole year. The wavelet coherence along five transects across the ice shelves suggests that TIS basal melting is dominated by eddy processes, while MUIS basal melting is dominated by tidal processes. The eddy-dominated basal melt for TIS is probably due to the large and convoluted bathymetric gradients beneath the ice shelf, weakening higher frequency tidal mode transport. This illustrates the key role of accurate bathymetric data plays in simulating on-going and future evolution of these important ice shelves

    Site-specific protein photochemical covalent attachment to carbon nanotube side walls and its electronic impact on single molecule function

    Get PDF
    Functional integration of proteins with carbon-based nanomaterials such as nanotubes holds great promise in emerging electronic and optoelectronic applications. Control over protein attachment poses a major challenge for consistent and useful device fabrication, especially when utilizing single/few molecule properties. Here, we exploit genetically encoded phenyl azide photochemistry to define the direct covalent attachment of four different proteins, including the fluorescent protein GFP and a β-lactamase binding protein (BBP), to carbon nanotube side walls. AFM showed that on attachment BBP could still recognize and bind additional protein components. Single molecule fluorescence revealed that on attachment to SWCNTs function was retained and there was feedback to GFP in terms of fluorescence intensity and improved resistance to photobleaching; GFP is fluorescent for much longer on attachment. The site of attachment proved important in terms of electronic impact on GFP function, with the attachment site furthest from the chromophore having the larger effect on fluorescence. Our approach provides a versatile and general method for generating intimate protein–CNT hybrid bioconjugates. It can be potentially applied to any protein of choice; the attachment position and thus interface characteristics with the CNT can easily be changed by simply placing the phenyl azide chemistry at different residues by gene mutagenesis. Thus, our approach will allow consistent construction and modulate functional coupling through changing the protein attachment position
    corecore