17 research outputs found
Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed
We present the concluding result from an Ives-Stilwell-type time dilation
experiment using 7Li+ ions confined at a velocity of beta = v/c = 0.338 in the
storage ring ESR at Darmstadt. A Lambda-type three-level system within the
hyperfine structure of the 7Li+ triplet S1-P2 line is driven by two laser beams
aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler
shifted frequencies required for resonance are measured with an accuracy of < 4
ppb using optical-optical double resonance spectroscopy. This allows us to
verify the Special Relativity relation between the time dilation factor gamma
and the velocity beta to within 2.3 ppb at this velocity. The result, which is
singled out by a high boost velocity beta, is also interpreted within Lorentz
Invariance violating test theories
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
Mass Measurements of Neutron-Deficient Yb Isotopes and Nuclear Structure at the Extreme Proton-Rich Side of the N=82 Shell
International audienceHigh-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF using TITAN’s multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending the measurements to two isotopes further away from stability than otherwise possible. The ground state masses of Yb150,153 and the excitation energy of Ybm151 were measured for the first time. As a result, the persistence of the N=82 shell with almost unmodified shell gap energies is established up to the proton drip line. Furthermore, the puzzling systematics of the h11/2-excited isomeric states of the N=81 isotones are unraveled using state-of-the-art mean field calculation
Electric dipole moments and the search for new physics
Static electric dipole moments of nondegenerate systems probe mass scales for
physics beyond the Standard Model well beyond those reached directly at high
energy colliders. Discrimination between different physics models, however,
requires complementary searches in atomic-molecular-and-optical, nuclear and
particle physics. In this report, we discuss the current status and prospects
in the near future for a compelling suite of such experiments, along with
developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and
endorsement
Photoionization of the francium 7P3/2 state
We have measured the non-resonant photoionization cross-section of the 7P3/2 state of francium for 442 nm light to be 20.8 Âą 7.1 Mb. Atoms were irradiated in a magneto-optical trap, and we deduce the photoionization rate from the change in trap lifetime. The result is consistent with a simple extrapolation of known cross-sections for other alkali atoms.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
ARTICLES Test of relativistic time dilation with fast optical atomic clocks at different velocities
Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7 Li + ions are prepared at 6.4 % and 3.0 % of the speed of light in a storage ring, and their time is read with an accuracy of 2×10 −10 using laser saturation spectroscopy. The comparison of the Doppler shifts yields a time dilation measurement represented by a Mansouri–Sexl parameter | ˆα | ≤ 8.4×10 −8, consistent with special relativity. This constrains the existence of a preferred cosmological reference frame and CPT- and Lorentz-violating ‘new ’ physics beyond the standard model. Since its introduction by Albert Einstein in 1905 (ref. 1), special relativity has been the accepted theory of local space-time. It not only resolved severe open questions in electrodynamics but introduced a revolutionary new notion of space and time that influenced a variety of areas from technology 2 to philosophy 3. Today its main ingredient, the space-time symmetry of local Lorentz invariance, is deeply woven into all physical theorie