10 research outputs found

    A large-NcN_c PNJL model with explicit ZNc_{N_c} symmetry

    Full text link
    A PNJL model is built, in which the Polyakov-loop potential is explicitly ZNc_{N_c}-symmetric in order to mimic a Yang-Mills theory with gauge group SU(NcN_c). The physically expected large-NcN_c and large-TT behaviours of the thermodynamic observables computed from the Polyakov-loop potential are used to constrain its free parameters. The effective potential is eventually U(1)-symmetric when NcN_c is infinite. Light quark flavours are added by using a Nambu-Jona-Lasinio (NJL) model coupled to the Polyakov loop (the PNJL model), and the different phases of the resulting PNJL model are discussed in 't Hooft's large-NcN_c limit. Three phases are found, in agreement with previous large-NcN_c studies. When the temperature TT is larger than some deconfinement temperature TdT_d, the system is in a deconfined, chirally symmetric, phase for any quark chemical potential μ\mu. When T<TdT<T_d however, the system is in a confined phase in which chiral symmetry is either broken or not. The critical line Tχ(μ)T_\chi(\mu), signalling the restoration of chiral symmetry, has the same qualitative features than what can be obtained within a standard Nc=3N_c=3 PNJL model.Comment: To appear in Phys Rev

    A minimal quasiparticle approach for the QGP and its large-NcN_c limits

    Full text link
    We propose a quasiparticle approach allowing to compute the equation of state of a generic gauge theory with gauge group SU(NcN_c) and quarks in an arbitrary representation. Our formalism relies on the thermal quasiparticle masses (quarks and gluons) computed from Hard-Thermal-Loop techniques, in which the standard two-loop running coupling constant is used. Our model is minimal in the sense that we do not allow any extra ansatz concerning the temperature-dependence of the running coupling. We first show that it is able to reproduce the most recent equations of state computed on the lattice for temperatures higher than 2 TcT_c. In this range of temperatures, an ideal gas framework is indeed expected to be relevant. Then we study the accuracy of various inequivalent large-NcN_c limits concerning the description of the QCD results, as well as the equivalence between the QCDAS_{AS} limit and the N=1{\cal N}=1 SUSY Yang-Mills theory. Finally, we estimate the dissociation temperature of the ÎĄ\Upsilon-meson and comment on the estimations' stability regarding the different considered large-NcN_c limits.Comment: 19 pages, 6 figure

    Glueballs and the Yang-Mills plasma in a T

    No full text

    Annual Selected Bibliography

    No full text
    corecore