15 research outputs found

    Bacterial Killing Via A Type Iv Secretion System.

    Get PDF
    Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.6645

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio

    Expression, crystallization and preliminary crystallographic analysis of PilZXAC1133 from Xanthomonas axonopodis pv. citri

    No full text
    The cloning and expression of recombinant PilZXAC1133, a protein belonging to the PilZ superfamily, are described. PilZ proteins are associated with the control of several complex behaviours in bacteria and in some cases have been shown to bind c-diGMP. PilZXAC1133 containing selenomethionine produced crystals that diffracted to 1.85 Å resolution

    The Xanthomonas type IV pilus

    No full text
    Type IV pili, a special class of bacterial surface filaments, are key behavioral mediators for many important human pathogens. However, we know very little about the role of these structures in the lifestyles of plant-associated bacteria. Over the past few years, several groups studying the extensive genus of Xanthomonas spp. have gained insights into the roles of played by type IV pili in bacteria-host interactions and pathogenesis, motility, biofilm formation, and interactions with bacteriophages. Protein-protein interaction studies have identified T4P regulators and these, along with structural studies, have begun to reveal some of the possible molecular mechanisms that may control the extension/retraction cycles of these dynamic filaments.Fil: Dunger, Ricardo German. Universidade de Sao Paulo; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; ArgentinaFil: Llontop, Edgar. Universidade de Sao Paulo; BrasilFil: Guzzo, Cristiane R.. Universidade de Sao Paulo; BrasilFil: Farah, Chuck S.. Universidade de Sao Paulo; Brasi

    Crystallization and preliminary X-ray analysis of LipL32 from Leptospira interrogans serovar Copenhageni

    No full text
    Recombinant selenomethionine-labelled LipL32, the major surface protein of pathogenic Leptospira, has been purified and crystallized. Data sets from two crystals were collected, one of which diffracted to 2.25 Å resolution

    PILZ Protein Structure and Interactions with PILB and the FIMX EAL Domain: Implications for Control of Type IV Pilus Biogenesis

    No full text
    The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq, BrazilConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut

    No full text
    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Associacao Brasileira de Tecnologia de Luz Sincroton (ABTLus)Associacao Brasileira de Tecnologia de Luz Sincroton (ABTLus

    Expression, crystallization and preliminary crystallographic analysis of SufE (XAC2355) from Xanthomonas axonopodis pv. citri

    No full text
    Cloning, expression, purification, crystallization and data collection are reported for a member of the SufE family of proteins involved in the biosynthesis of Fe–S clusters in prokaryotes. Diffraction data were collected to 1.9 Å resolution and an interpretable electron-density map has been obtained by molecular replacement

    Tamoxifen associated to the conservative CKD treatment promoted additional antifibrotic effects on experimental hypertensive nephrosclerosis

    No full text
    Abstract CKD progression depends on the activation of an intricate set of hemodynamic and inflammatory mechanisms, promoting renal leukocyte infiltration, inflammation and fibrosis, leading to renal function loss. There are currently no specific drugs to detain renal fibrogenesis, which is a common end-point for different nephropathies. Clinical therapy for CKD is mostly based on the management of hypertension and proteinuria, partially achieved with renin–angiotensin–aldosterone system (RAAS) blockers, and the control of inflammation by immunosuppressive drugs. The aim of the present study was to verify if the administration of tamoxifen (TAM), an estrogen receptor modulator, clinically employed in the treatment of breast cancer and predicted to exert antifibrotic effects, would promote additional benefits when associated to a currently used therapeutic scheme for the conservative management of experimental CKD. Wistar rats underwent the NAME model of hypertensive nephrosclerosis, obtained by daily oral administration of a nitric oxide synthesis inhibitor, associated to dietary sodium overload. The therapeutic association of TAM to losartan (LOS), and mofetil mycophenolate (MMF) effectively reduced the severe hypertension, marked albuminuria and glomerular damage exhibited by NAME animals. Moreover, the association also succeeded in limiting renal inflammation in this model, and promoted further reduction of ECM interstitial accumulation and renal fibrosis, compared to the monotherapies. According to our results, the association of TAM to the currently used conservative treatment of CKD added significant antifibrotic effects both in vivo and in vitro, and may represent an alternative to slow the progression of chronic nephropathy
    corecore