1,105 research outputs found

    Tabulation of PVI Transcendents and Parametrization Formulas (August 17, 2011)

    Full text link
    The critical and asymptotic behaviors of solutions of the sixth Painlev\'e equation PVI, obtained in the framework of the monodromy preserving deformation method, and their explicit parametrization in terms of monodromy data, are tabulated.Comment: 30 pages, 1 figure; Nonlinearity 201

    Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach

    Full text link
    Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are based on deterministic laws. These models extend spatially the static stability models adopted in geotechnical engineering, and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the operation of the existing models lays in the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of rainfall-induced shallow landslides. For the purpose, we have modified the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a probabilistic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. [..]Comment: 25 pages, 14 figures, 9 tables. Revised version; accepted for publication in Geoscientific Model Development on 13 February 201

    Il rischio idrogeologico in Italia e il ruolo della ricerca scientifica

    Get PDF
    In Italia, le frane e le inondazioni sono fenomeni diffusi, ricorrenti e pericolosi. Fra il 1960 e il 2011 ci sono stati almeno 789 eventi di frana che hanno prodotto oltre 5000 vittime (di cui 3417 morti e 15 dispersi) in 522 comuni (6,4% del totale). Nello stesso periodo si sono verificati almeno 505 eventi d’inondazione che hanno prodotto più di 1700 vittime (di 753 morti e 68 dispersi), in 372 comuni (4,6% del totale). Fra il 2005 e il 2011, si sono avuti 82 eventi di frana che hanno prodotto oltre 480 vittime (101 morti, 6 dispersi, 374 feriti) in 70 comuni, e 39 inondazioni in altrettanti comuni con 89 vittime (59 morti, 1 disperso, 29 feriti). Nel periodo 2005-2011 tutte le Regioni hanno sofferto almeno un evento di frana o d’inondazione con vittime, a conferma della diffusione geografica del rischio geo-idrologico. Le cifre dimostrano inequivocabilmente come l’impatto che gli eventi geo-idrologici hanno sulla popolazione sia un problema prioritariamente di rilevanza sociale che enfatizza la rilevanza delle attività scientifiche che possano conseguire risultati utili a ridurre gli effetti negativi

    Exploring the effects of seismicity on landslides and catchment sediment yield: An Italian case study

    Full text link
    Recent studies showed that contemporary average catchment sediment yields (SY, [t km− 2 y− 1]) at regional and continental scales are often strongly correlated to spatial patterns of seismic activity. Nonetheless, we currently have little insights into the mechanisms that explain these correlations. We investigated how spatial patterns of SY in Italy are linked to patterns of seismic activity. For a dataset of 103 Italian catchments with average SY measured over a period of years to decades, we extracted tectonic and none-tectonic variables that potentially explain observed differences in SY. These include proxies for vertical uplift rates and cumulative seismic moments (CSM) associated with historic earthquakes of different ranges of magnitude. Results showed that also across Italy, SY is significantly correlated to seismicity. However, SY showed much stronger correlations with proxies of seismicity relating to small but frequent earthquakes (2 ≤ Mw < 4) than with proxies relating to tectonic uplift or large, potentially landslide-triggering earthquakes (Mw ≥ 4). Analyses of a dataset of about 500,000 landslides across Italy showed very comparable trends: spatial patterns of landslides within similar lithological units generally show a significant positive correlation with CSM of weak but frequent seismicity and generally not with CSM of large earthquakes. These results suggest that, on a decadal time scale and at a regional/continental spatial scale, frequent but relatively weak seismicity may exert a more important geomorphic impact than large earthquake events or tectonic uplift. © 2016 Elsevier B.V

    Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar

    Get PDF
    International audienceA high resolution Digital Elevation Model with a ground resolution of 2 m×2 m (DEM2) was obtained for the Collazzone area, central Umbria, through weighted linear interpolation of elevation points acquired by Airborne Lidar Swath Mapping. Acquisition of the elevation data was performed on 3 May 2004, following a rainfall period that resulted in numerous landslides. A reconnaissance field survey conducted immediately after the rainfall period allowed mapping 70 landslides in the study area, for a total landslide area of 2.7×105 m2. Topographic derivative maps obtained from the DEM2 were used to update the reconnaissance landslide inventory map in 22 selected sub-areas. The revised inventory map shows 27% more landslides and 39% less total landslide area, corresponding to a smaller average landslide size. Discrepancies between the reconnaissance and the revised inventory maps were attributed to mapping errors and imprecision chiefly in the reconnaissance field inventory. Landslides identified exploiting the Lidar elevation data matched the local topography more accurately than the same landslides mapped using the existing topographic maps. Reasons for the difference include an incomplete or inaccurate view of the landslides in the field, an unfaithful representation of topography in the based maps, and the limited time available to map the landslides in the field. The high resolution DEM2 was compared to a coarser resolution (10 m×10 m) DEM10 to establish how well the two DEMs captured the topographic signature of landslides. Results indicate that the improved topographic information provided by DEM2 was significant in identifying recent rainfall-induced landslides, and was less significant in improving the representation of stable slopes

    Landslide hazard assessment in the Collazzone area, Umbria, Central Italy

    Get PDF
    We present the results of the application of a recently proposed model to determine landslide hazard. The model predicts where landslides will occur, how frequently they will occur, and how large they will be in a given area. For the Collazzone area, in the central Italian Apennines, we prepared a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1941 and 1997 and field surveys conducted in the period between 1998 and 2004. We then partitioned the 79 square kilometres study area into 894 slope units, and obtained the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphology, lithology, structure and land use. For each slope unit, we computed the expected landslide recurrence by dividing the total number of landslide events inventoried in the terrain unit by the time span of the investigated period. Assuming landslide recurrence was constant, and adopting a Poisson probability model, we determined the exceedance probability of having one or more landslides in each slope unit, for different periods. We obtained the probability of landslide size, a proxy for landslide magnitude, by analysing the frequency-area statistics of landslides, obtained from the multi-temporal inventory map. Lastly, assuming independence, we determined landslide hazard for each slope unit as the joint probability of landslide size, of landslide temporal occurrence, and of landslide spatial occurrence

    Remote landslide mapping using a laser rangefinder binocular and GPS

    Get PDF
    We tested a high-quality laser rangefinder binocular coupled with a GPS receiver connected to a Tablet PC running dedicated software to help recognize and map in the field recent rainfall-induced landslides. The system was tested in the period between March and April 2010, in the Monte Castello di Vibio area, Umbria, Central Italy. To test the equipment, we measured thirteen slope failures that were mapped previously during a visual reconnaissance field campaign conducted in February and March 2010. For reference, four slope failures were also mapped by walking the GPS receiver along the landslide perimeter. Comparison of the different mappings revealed that the geographical information obtained remotely for each landslide by the rangefinder binocular and GPS was comparable to the information obtained by walking the GPS around the landslide perimeter, and was superior to the information obtained through the visual reconnaissance mapping. Although our tests were not exhaustive, we maintain that the system is effective to map recent rainfall induced landslides in the field, and we foresee the possibility of using the same (or similar) system to map landslides, and other geomorphological features, in other areas

    Non-susceptible landslide areas in Italy and in the Mediterranean region

    Get PDF
    Abstract. We used landslide information for 13 study areas in Italy and morphometric information obtained from the 3-arcseconds shuttle radar topography mission digital elevation model (SRTM DEM) to determine areas where landslide susceptibility is expected to be negligible in Italy and in the landmasses surrounding the Mediterranean Sea. The morphometric information consisted of the local terrain slope which was computed in a square 3 × 3-cell moving window, and in the regional relative relief computed in a circular 15 × 15-cell moving window. We tested three different models to classify the "non-susceptible" landslide areas, including a linear model (LNR), a quantile linear model (QLR), and a quantile, non-linear model (QNL). We tested the performance of the three models using independent landslide information presented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia – IFFI). Best results were obtained using the QNL model. The corresponding zonation of non-susceptible landslide areas was intersected in a geographic information system (GIS) with geographical census data for Italy. The result determined that 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility is expected to be negligible. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non-susceptibility zonation using independent landslide information for three study areas in Spain. Results showed that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the validation areas in Spain. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible landslide areas, at the synoptic scale

    Primordial gravitational waves as a promising test for inflationary models

    Get PDF
    Any inflationary model predicts the production of a stochastic gravitational-wave background. Such a signal includes unique information about the primordial mechanism that generate it, then representing a promising way of probing the inflationary physics. In this direction, upcoming and future experiments of direct gravitational-wave detection at small scales is expected to play a relevant role, providing new constraints on the features of the inflationary gravitational waves
    • …
    corecore