15 research outputs found

    Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed

    Get PDF
    Vernalization-induced flowering is an effect of the epigenetic regulation of gene expression through DNA methylation and histone modifications. Vernalization-mediated silencing of a floral repressor through histone modifications was shown in Arabidopsis thaliana. However, for Brassica napus L., the mechanism underlying vernalization is unclear, and the roles of DNA methylation and histone modifications have not been established. This study revealed the profiles of changes in the DNA methylation state during vernalization (after 14, 35, 56 days) and the subsequent growth in long- or short-day photoperiods (after 2, 7, 14 days) in the winter and spring rapeseed using TLC and MSAP techniques. TLC analysis showed a significant decrease in the amount of 5-methylcytosine (m5C) in genomic DNA in both cultivars at the beginning of vernalization, but upon its termination, the winter rape showed a reduced level of m5C contrary to a significantly increased level in the spring rape. MSAP analysis revealed that winter and spring rapeseed differed in the MSAP loci which were demethylated/methylated in the course of the experiment and presented diverse profiles of changes in the methylation state. The winter rape showed permanent demethylations at 69. 2 % of MSAP loci in the course of vernalization that were mostly preserved upon its termination. The spring rape showed similar numbers of demethylations and methylations that were mainly transient. The study provides evidence of the role of DNA methylation in vernalization for rapeseed and for the significant prevalence of demethylations at the beginning of vernalization, which is necessary for the transition to reproductive growth

    Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci

    Get PDF
    Determining the role of plant secondary metabolites in stress conditions is problematic due to the diversity of their structures and the complexity of their interdependence with different biological pathways. Correlation of metabolomic data with the genetic background provides essential information about the features of metabolites. LC-MS analysis of leaf metabolites from 100 barley recombinant inbred lines (RILs) revealed that 98 traits among 135 detected phenolic and terpenoid compounds significantly changed their level as a result of drought stress. Metabolites with similar patterns of change were grouped in modules, revealing differences among RILs and parental varieties at early and late stages of drought. The most significant changes in stress were observed for ferulic and sinapic acid derivatives as well as acylated glycosides of flavones. The tendency to accumulate methylated compounds was a major phenomenon in this set of samples. In addition, the polyamine derivatives hordatines as well as terpenoid blumenol C derivatives were observed to be drought related. The correlation of drought-related compounds with molecular marker polymorphisms resulted in the definition of metabolomic quantitative trait loci in the genomic regions of single-nucleotide polymorphism 3101-111 and simple sequence repeat Bmag0692 with multiple linkages to metabolites. The associations pointed to genes related to the defence response and response to cold, heat and oxidative stress, but not to genes related to biosynthesis of the compounds. We postulate that the significant metabolites have a role as antioxidants, regulators of gene expression and modulators of protein function in barley during drought

    Use of molecular biology techniques to identify genetically modified organisms (GMOs) in food products – do you know what you eat?

    Get PDF
    tekst w j. pol. i ang.Ocena poprawności oznaczeń produktów spożywczych pod kątem zawartości genetycznie modyfikowanych organizmów (GMO)

    Morphological, genetic and molecular characteristics of barley root hair mutants

    Get PDF
    Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses. Each mutant was monogenic and recessive. An allelism test revealed that nine loci were responsible for the mutated root hair phenotypes in the collection and 1–4 mutated allelic forms were identified at each locus. Genetic relationships between the genes responsible for different stages of root hair formation were established. The linkage groups of four loci rhl1, rhp1, rhi1 and rhs1, which had previously been mapped on chromosomes 7H, 1H, 6H and 5H, respectively, were enriched with new markers that flank the genes at a distance of 0.16 cM to 4.6 cM. The chromosomal position of three new genes – two that are responsible for the development of short root hairs (rhs2 and rhs3) and the gene that controls an irregular root hair pattern (rhi2) – were mapped on chromosomes 6H, 2H and 1H, respectively. A comparative analysis of the agrobotanical parameters between some mutants and their respective parental lines showed that mutations in genes responsible for root hair development had no effect on the agrobotanical performance of plants that were grown under controlled conditions. The presented mutant collection is a valuable tool for further identification of genes controlling root hair development in barley

    QTLs for earliness and yield-forming traits in the Lubuski x CamB barley RIL population under various water regimes

    Get PDF
    This work was supported by the European Regional Development Fund through the Innovative Economy Programme 2007?2013, project WND-POIG.01.03.01?00?101/08 POLAPGEN-BD "Biotechnological tools for breeding cereals with increased resistance to drought".Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880–2547, in the vicinity of Ppd-H1 gene. SNP 5880–2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.European Regional Development Fun

    Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes

    Get PDF
    High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to ‘response to stress’ were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances

    HorTILLUS - a rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.)

    Get PDF
    TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS (Hordeum—TILLING—University of Silesia) population created for spring barley cultivar “Sebastian” after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072–6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platformis the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations.We offer the usage of this valuable resource to the interested barley researchers on cooperative basis

    Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars

    Get PDF
    <div><p>In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi).</p></div
    corecore