8,299 research outputs found

    Study of the pore structure of ceramics prepared by the slip casting method

    Get PDF
    The porosity of the slip cast Si3N4 is similar to that of pressed Si3N4 formed at 2500 kg/sq cm. The porosity of cast Si oxynitride is equivalent to that of samples stressed at 10,000 kg/sq cm. Crucibles formed from these materials by slip casting have high thermal shock and corrosion resistance

    Dependence of the Fundamental Plane Scatter on Galaxy Age

    Get PDF
    The fundamental plane (FP) has an intrinsic scatter that can not be explained purely by observational errors. Using recently available age estimates for nearby early type galaxies, we show that a galaxy's position relative to the FP depends on its age. In particular, the mean FP corresponds to ellipticals with an age of ~10 Gyr. Younger galaxies are systematically brighter with higher surface brightness relative to the mean relation. Old ellipticals form an `upper envelope' to the FP. For our sample of mostly non-cluster galaxies, age can account for almost half of the scatter in the B band FP. Distance determinations based on the FP may have a systematic bias, if the mean age of the sample varies with redshift. We also show that fundamental plane residuals, B-V colors and Mg_2 line strength are consistent with an ageing central burst superposed on an old stellar population. This reinforces the view that these age estimates are tracing the last major episode of star formation induced by a gaseous merger event. We briefly discuss the empirical `evolutionary tracks' of merger-remnants and young ellipticals in terms of their key observational parameters.Comment: 14 pages, Latex, 2 figures, accepted by ApJ Letter

    The Universality of the Fundamental Plane of E and S0 Galaxies. Spectroscopic data

    Full text link
    We present here central velocity dispersion measurements for 325 early-type galaxies in eight clusters and groups of galaxies, including new observations for 212 galaxies. The clusters and groups are the A262, A1367, Coma (A1656), A2634, Cancer and Pegasus clusters, and the NGC 383 and NGC 507 groups. The new measurements were derived from medium dispersion spectra, that cover 600 A centered on the Mg Ib triplet at lambda ~ 5175. Velocity dispersions were measured using the Tonry & Davis cross-correlation method, with a typical accuracy of 6%. A detailed comparison with other data sources is made.Comment: 12 pages, 5 tables, 3 figures, to appear in AJ. Note that tables 2 and 3 are in separate files, as they should be printed in landscape forma

    A Survey of CH3CN and HC3N in Protoplanetary Disks

    Full text link
    The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N towards the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected towards all disks except IM Lup, and CH3CN is detected towards V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29-73K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 AU of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions

    Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO₂ vent system

    Get PDF
    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO₂. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO₂ vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO₂. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO₂, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO₂ environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO₂. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification

    Near-Infrared Imaging of Early-Type Galaxies III. The Near-Infrared Fundamental Plane

    Full text link
    Near-infrared imaging data on 251 early-type galaxies in clusters and groups are used to construct the near-infrared Fundamental Plane (FP) r_eff ~ sigma_0^1.53 _eff^-0.79. The slope of the FP therefore departs from the virial expectation of r_eff ~ sigma_0^2 _eff^-1 at all optical and near-infrared wavelengths, which could be a result of the variation of M/L along the elliptical galaxy sequence, or a systematic breakdown of homology among the family of elliptical galaxies. The slope of the near-infrared FP excludes metallicity variations as the sole cause of the slope of the FP. Age effects, dynamical deviations from a homology, or any combination of these (with or without metallicity), however, are not excluded. The scatter of both the near-infrared and optical FP are nearly identical and substantially larger than the observational uncertainties, demonstrating small but significant intrinsic cosmological scatter for the FP at all wavelengths. The lack of a correlation of the residuals of the near-infrared FP and the residuals from the Mg_2-sigma relation indicates that the thickness of these relations cannot be ascribed only to age or metallicity effects. Due to this metallicity independence, the small scatter of the near-infrared FP excludes a model in which age and metallicity effects ``conspire'' to keep the optical FP thin. All of these results suggest that the possible physical origins of the FP relations are complicated due to combined effects of variations of stellar populations and structural parameters among elliptical galaxies.Comment: to appear in The Astronomical Journal; 35 pages, including 13 Postscript figures and 1 table; uses AAS LaTeX style file

    Quantum and classical thermal correlations in the XY spin-1/2 chain

    Full text link
    We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second-neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, the thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit
    corecore