7,210 research outputs found

    Tracing the magnetic field of IRDC G028.23-00.19 using NIR polarimetry

    Full text link
    The importance of the magnetic (B) field in the formation of infrared dark clouds (IRDCs) and massive stars is an ongoing topic of investigation. We studied the plane-of-sky B field for one IRDC, G028.23-00.19, to understand the interaction between the field and the cloud. We used near-IR background starlight polarimetry to probe the B field and performed several observational tests to assess the field importance. The polarimetric data, taken with the Mimir instrument, consisted of H-band and K-band observations, totaling 17,160 stellar measurements. We traced the plane-of-sky B-field morphology with respect to the sky-projected cloud elongation. We also found the relationship between the estimated B-field strength and gas volume density, and we computed estimates of the normalized mass-to-magnetic flux ratio. The B-field orientation with respect to the cloud did not show a preferred alignment, but it did exhibit a large-scale pattern. The plane-of-sky B-field strengths ranged from 10 to 165 μG, and the B-field strength dependence on density followed a power law with an index consistent with 2/3. The mass-to-magnetic flux ratio also increased as a function of density. The relative orientations and relationship between the B field and density imply that the B field was not dynamically important in the formation of the IRDC. The increase in mass-to-flux ratio as a function of density, though, indicates a dynamically important B field. Therefore, it is unclear whether the B field influenced the formation of G28.23. However, it is likely that the presence of the IRDC changed the local B-field morphology.We thank J. Montgomery, T. Hogge, and I. Stephens for constructive discussions on the analysis. We are grateful to R. Crutcher for permission to include his Zeeman data. This research was conducted in part using the Mimir instrument, jointly developed at Boston University and Lowell Observatory and supported by NASA, NSF, and the W.M. Keck Foundation. This research made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology (Caltech), under contract with NASA. This publication made use of data products from the Two Micron All Sky Survey, which was a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and NSF. This work is based in part on data obtained as part of the UKIRT Infrared Deep Sky Survey. The ATLAS-GAL project is a collaboration between the Max-PlanckGesellschaft, the European Southern Observatory (ESO), and the Universidad de Chile. It includes projects E-181.C-0885, E-078.F-9040(A), M-079.C-9501(A), M-081.C-9501(A), and Chilean data. This publication makes use of molecular line data from the Boston University-FCRAO Galactic Ring Survey (GRS). The GRS is a joint project of Boston University and Five College Radio Astronomy Observatory, funded by the National Science Foundation under grants AST-9800334, 0098562, 0100793, 0228993, and. 0507657. A.E.G. acknowledges support from FONDECYT 3150570. This work was supported under NSF grants AST 09-07790 and 14-12269 and NASA grant NNX15AE51G to Boston University. We thank the anonymous referee for valuable feedback, which improved the quality of this work. (NASA; NSF; W.M. Keck Foundation; E-181.C-0885 - Max-Planck-Gesellschaft; E-078.F-9040(A) - Max-Planck-Gesellschaft; M-079.C-9501(A) - Max-Planck-Gesellschaft; M-081.C-9501(A) - Max-Planck-Gesellschaft; E-181.C-0885 - European Southern Observatory (ESO); E-078.F-9040(A) - European Southern Observatory (ESO); M-079.C-9501(A) - European Southern Observatory (ESO); M-081.C-9501(A) - European Southern Observatory (ESO); E-181.C-0885 - Universidad de Chile; E-078.F-9040(A) - Universidad de Chile; M-079.C-9501(A) - Universidad de Chile; M-081.C-9501(A) - Universidad de Chile; AST-9800334 - National Science Foundation; 0098562 - National Science Foundation; 0100793 - National Science Foundation; 0228993 - National Science Foundation; 0507657 - National Science Foundation; 3150570 - FONDECYT; AST 09-07790 - NSF; 14-12269 - NSF; NNX15AE51G - NASA

    Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate

    Full text link
    Helical spin textures in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. This evolution is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. This is confirmed by eliminating the dipolar interactions by a sequence of rf pulses and observing a suppression of the formation of the short-range domains. This study confirms the significance of magnetic dipole interactions in degenerate 87^{87}Rb F=1 spinor gases

    Amplification of Fluctuations in a Spinor Bose Einstein Condensate

    Full text link
    Dynamical instabilities due to spin-mixing collisions in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are used as an amplifier of quantum spin fluctuations. We demonstrate the spectrum of this amplifier to be tunable, in quantitative agreement with mean-field calculations. We quantify the microscopic spin fluctuations of the initially paramagnetic condensate by applying this amplifier and measuring the resulting macroscopic magnetization. The magnitude of these fluctuations is consistent with predictions of a beyond-mean-field theory. The spinor-condensate-based spin amplifier is thus shown to be nearly quantum-limited at a gain as high as 30 dB

    Probing the Super Star Cluster Environment of NGC 1569 Using FISICA

    Full text link
    We present near-IR JH spectra of the central regions of the dwarf starburst galaxy NGC 1569 using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA). The dust-penetrating properties and available spectral features of the near-IR, combined with the integral field unit (IFU) capability to take spectra of a field, make FISICA an ideal tool for this work. We use the prominent [He I] (1.083\mu m) and Pa\beta (1.282 \mu m) lines to probe the dense star forming regions as well as characterize the general star forming environment around the super star clusters (SSCs) in NGC 1569. We find [He I] coincident with CO clouds to the north and west of the SSCs, which provides the first, conclusive evidence for embedded star clusters here.Comment: 6 pages, 3 figures, accepted for publication in the MNRA

    The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?

    Get PDF
    Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosities, blue colors, and high surface brightnesses. Residing at the high luminosity, high mass end of the blue sequence, LCBGs sit at the critical juncture of galaxies that are evolving from the blue to the red sequence. Yet we do not understand what drives the evolution of LCBGs, nor how they will evolve. Based on single-dish HI observations, we know that they have a diverse range of properties. LCBGs are HI-rich with M(HI)=10^{9-10.5} M(sun), have moderate M(dyn)=10^{10-12} M(sun), and 80% have gas depletion timescales less than 3 Gyr. These properties are consistent with LCBGs evolving into low-mass spirals or high mass dwarf ellipticals or dwarf irregulars. However, LCBGs do not follow the Tully-Fisher relation, nor can most evolve onto it, implying that many LCBGs are not smoothly rotating, virialized systems. GMRT and VLA HI maps confirm this conclusion revealing signatures of recent interactions and dynamically hot components in some local LCBGs, consistent with the formation of a thick disk or spheroid. Such signatures and the high incidence of close companions around LCBGs suggest that star formation in local LCBGs is likely triggered by interactions. The dynamical masses and apparent spheroid formation in LCBGs combined with previous results from optical spectroscopy are consistent with virial heating being the primary mechanism for quenching star formation in these galaxies.Comment: 4 pages, 1 figure, to appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popescu, AIP Conf. Se

    Intelligent Agents: A Physics Education Opportunity in Latin-America

    Full text link
    Intelligent Agents are being applied in a wide range of processes and everyday applications. Their development is not new, in recent years they have had an increased attention and design in learning and as mentoring tools. In this paper we discuss the definition of what an intelligent agent is; how they are applied; how thy look like; recent implementations of agents; agents as support in learning process; their state in Latin-American countries and future developments and trends that will permit a better communication between people and agents.Comment: 6 page

    High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate

    Full text link
    We demonstrate a precision magnetic microscope based on direct imaging of the Larmor precession of a 87^{87}Rb spinor Bose-Einstein condensate. This magnetometer attains a field sensitivity of 8.3 pT/Hz1/2^{1/2} over a measurement area of 120 μ\mum2^2, an improvement over the low-frequency field sensitivity of modern SQUID magnetometers. The corresponding atom shot-noise limited sensitivity is estimated to be 0.15 pT/Hz1/2^{1/2} for unity duty cycle measurement. The achieved phase sensitivity is close to the atom shot-noise limit suggesting possibilities of spatially resolved spin-squeezed magnetometry. This magnetometer marks a significant application of degenerate atomic gases to metrology
    • …
    corecore