24 research outputs found

    Serum KL-6 is a predictor of outcome in pulmonary alveolar proteinosis

    Get PDF
    Background: Pulmonary alveolar proteinosis (PAP) is a rare disorder characterised by abundant alveolar accumulation of surfactant lipoproteins. Serum levels of KL-6, high molecular weight human MUC1 mucin, are increased in the majority of patients with PAP. The prognostic significance of KL-6 in PAP is still unknown. Aim of the study was to evaluate whether serum KL-6 levels correlate with the outcome of the disease. Patients and methods: From 2006 to 2012, we prospectively studied 33 patients with primary autoimmune PAP. We measured serum KL-6 levels by ELISA (Eisai, Tokyo, Japan), and evaluated the correlation between initial KL-6 levels and clinical variables. Disease progression was defined as deterioration of symptoms, and/or lung function, and/or chest imaging. Main results: The initial serum KL-6 levels were significantly correlated with the baseline PaO2, A-aDO(2), DLCO, VC and TLC (p=0.042, 0.012, 0.012, 0.02 and 0.013, respectively). The change over time of serum KL-6 correlated with the change over time of DLCO (p=0.017). The initial serum KL-6 levels were significantly higher in patients with disease progression than in those with remission (p<0.001). At a cut-off level of 1526 U/mL, the initial serum KL-6 level predicted disease progression (Se 81\%, Sp 94\%). At a cut-off level of 2157 U/mL, the initial serum KL-6 predicted the necessity of repeated whole lung lavage (Se 83\%, Sp 96\%). In the multivariate analysis, the initial serum level of KL-6 was the strongest predictor of disease progression (HR 9.41, p=0.008). Conclusions: Serum KL-6 seems to predict outcome in PAP

    Immunohistochemical detection of potential microbial antigens in granulomas in the diagnosis of sarcoidosis

    Get PDF
    Sarcoidosis may have more than a single causative agent, including infectious and non-infectious agents. Among the potential infectious causes of sarcoidosis, Mycobacterium tuberculosis and Propionibacterium acnes are the most likely microorganisms. Potential latent infection by both microorganisms complicates the findings of molecular and immunologic studies. Immune responses to potential infectious agents of sarcoidosis should be considered together with the microorganisms detected in sarcoid granulomas, because immunologic reactivities to infectious agents reflect current and past infection, including latent infection unrelated to the cause of the granuloma formation. Histopathologic data more readily support P. acnes as a cause of sarcoidosis compared with M. tuberculosis, suggesting that normally symbiotic P. acnes leads to granuloma formation in some predisposed individuals with Th1 hypersensitivity against intracellular proliferation of latent P. acnes, which may be triggered by certain host or drug-induced conditions. Detection of bacterial nucleic acids in granulomas does not necessarily indicate co-localization of the bacterial proteins in the granulomas. In the histopathologic diagnosis of sarcoidosis, M. tuberculosis-associated and P. acnes-associated sarcoidosis will possibly be differentiated in some patients by immunohistochemistry with appropriate antibodies that specifically react with mycobacterial and propionibacterial antigens, respectively, for each etiology-based diagnosis and potential antimicrobial intervention against sarcoidosis

    Targeting γ-secretases protect against angiotensin II-induced cardiac hypertrophy

    Get PDF
    OBJECTIVE: The Notch pathway has been linked to pulmonary hypertension, but its role in systemic hypertension and, in particular in left ventricular hypertrophy (LVH), remains poorly understood. The main objective of this work was to analyse the effect of inhibiting the Notch pathway on the establishment and maintenance of angiotensin II (Ang-II)-induced arterial hypertension and LVH in adult mice with inducible genetic deletion of γ-secretase, and to test preclinically the therapeutic efficacy of γ-secretase inhibitors (GSIs). BASIC METHODS: We analysed Ang-II responses in primary cultures of vascular smooth muscle cells obtained from a novel mouse model with inducible genetic deletion of the γ-secretase complex, and the effects of GSI treatment on a mouse cardiac cell line. We also investigated Ang-II-induced hypertension and LVH in our novel mouse strain lacking the γ-secretase complex and in GSI-treated wild-type mice. Moreover, we analysed vascular tissue from hypertensive patients with and without LVH. MAIN RESULTS: Vascular smooth muscle cells activate the Notch pathway in response to Ang-II both 'in vitro' and 'in vivo'. Genetic deletion of γ-secretase in adult mice prevented Ang-II-induced hypertension and LVH without causing major adverse effects. Treatment with GSI reduced Ang-II-induced hypertrophy of a cardiac cell line 'in vitro' and LVH in wild-type mice challenged with Ang-II. We also report elevated expression of the Notch target HES5 in vascular tissue from hypertensive patients with LVH compared with those without LVH. CONCLUSION: The Notch pathway is activated in the vasculature of mice with hypertension and LVH, and its inhibition via inducible genetic γ-secretase deletion protects against both conditions. Preliminary observations in hypertensive patients with LVH support the translational potential of these findings. Moreover, GSI treatment protects wild-type mice from Ang-II-induced LVH without affecting blood pressure. Our results unveil the potential use of GSIs in the treatment of hypertensive patients with LVH.Juan de la Cierva postdoctoral contract from MINECO [JCI-2011-09663]; MINECO; ProCNIC Foundation; Spanish Ministry of Economy and Competitivity (MINECO) [SAF2013-46663-R]; Instituto de Salud Carlos III [RD12/0042/0028, RD12/0042/0009, MS-00151]; Inserm (jeune chercheur accueilli)S

    Surfactant protein A detection in large cell carcinoma of the lung

    No full text
    Large cell carcinomas of the lung are undifferentiated malignant epithelial tumors that lack cytologic features of small cell carcinoma, glandular cell carcinoma, or squamous cell differentiation. Lung surfactant protein A (SP-A) is produced by alveolar type 11 cells and Clara cells. Most bronchioloalveolar carcinomas of the lung react positively for SP-A. Positive SP-A staining of large cell carcinoma of the lung could indicate that at least part of these tumors have the same cellular origin or differentiation as bronchioloalveolar carcinoma. The authors determined the SP-A staining of 63 large cell carcinomas of the lung by IHC. In 20 of the 63 (32%), the tumors stained positive for SP-A. This may imply that about one third of large cell carcinomas of the lung have a similar cellular origin or differentiation as bronchioloalveolar carcinoma. The significance of this finding for prognosis and new forms of treatment remains to be determined

    Differential diagnosis of granulomatous lung disease: clues and pitfalls

    No full text
    Granulomatous lung diseases are a heterogeneous group of disorders that have a wide spectrum of pathologies with variable clinical manifestations and outcomes. Precise clinical evaluation, laboratory testing, pulmonary function testing, radiological imaging including high-resolution computed tomography and often histopathological assessment contribute to make a confident diagnosis of granulomatous lung diseases. Differential diagnosis is challenging, and includes both infectious (mycobacteria and fungi) and noninfectious lung diseases (sarcoidosis, necrotising sarcoid granulomatosis, hypersensitivity pneumonitis, hot tub lung, berylliosis, granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, rheumatoid nodules, talc granulomatosis, Langerhans cell histiocytosis and bronchocentric granulomatosis). Bronchoalveolar lavage, endobronchial ultrasound-guided transbronchial needle aspiration, transbronchial cryobiopsy, positron emission tomography and genetic evaluation are potential candidates to improve the diagnostic accuracy for granulomatous lung diseases. As granuloma alone is a nonspecific histopathological finding, the multidisciplinary approach is important for a confident diagnosis

    MUC1 gene polymorphisms are associated with serum KL-6 levels and pulmonary dysfunction in pulmonary alveolar proteinosis

    Get PDF
    Background: KL-6, a human MUC1 mucin, is a sensitive biomarker for interstitial lung diseases including pulmonary alveolar proteinosis (PAP). A correlation between MUC1 gene single nucleotide polymorphism (SNP) rs4072037 genotype and serum KL-6 levels has been reported. This study was aimed at investigating the correlation between MUC1 SNP genotype, severity of disease and disease outcome in PAP. Methods: Twenty four patients with PAP and 30 healthy volunteers were studied. MUC1 rs4072037 was detected by using a real-time polymerase chain reaction (RT-PCR). Genotyping was performed by pyrosequencing. KL-6 levels were measured in serum by Nanopia KL-6 assay (SEKISUI Diagnostics). Results: The frequency of MUC1 rs4072037 alleles was significantly different between PAP patients and healthy volunteers (PAP, A/A 46 %, A/G 54 %, G/G 0 %;healthy controls, A/A 30 %, A/G 40 %, G/G 30 %;p = 0.013). Serum KL-6 levels were significantly higher in PAP patients than in controls (p < 0.0001), and significantly higher in PAP patients with A/A genotype than in those with A/G genotype (p = 0.007). Patients with A/A genotype had higher alveolar-arterial oxygen difference (A-aDO(2)) and lower DLco compared to those with A/G genotype (p = 0.027 and p = 0.012, respectively). Multivariate analysis, Kaplan-Meier analysis and C statistics showed that the rs4072037 A/A genotype was associated with higher rate of disease progression (HR: 5.557, p = 0.014). Conclusions: MUC1 rs4072037 A/A genotype is associated with more severe pulmonary dysfunction and a higher rate of disease progression in PAP patients
    corecore