4,129 research outputs found
Effective 4D propagation of a charged scalar particle in Visser brane world
In this work we extend an analysis due to Visser of the effective propagation
of a neutral scalar particle on a brane world scenario which is a particular
solution of the five dimensional Einstein-Maxwell equations with cosmological
constant having an electric field pointing in the extra spatial dimension. We
determine the dispersion relations of a charged scalar particle to first order
in a perturbative analysis around those of the neutral particle. Since
depending on whether the particle is charged or not the dispersion relations
change, we could collect bulk information, namely the presence of the electric
field, by studying the 4D dynamics of the particles.Comment: 12 pages, 5 figure
WISE morphological study of Wolf-Rayet nebulae
We present a morphological study of nebulae around Wolf-Rayet (WR) stars
using archival narrow-band optical and Wide-field Infrared Survey Explorer
(WISE) infrared images. The comparison among WISE images in different bands and
optical images proves to be a very efficient procedure to identify the nebular
emission from WR nebulae, and to disentangle it from that of the ISM material
along the line of sight. In particular, WR nebulae are clearly detected in the
WISE W4 band at 22 m. Analysis of available mid-IR Spitzer spectra shows
that the emission in this band is dominated by thermal emission from dust
spatially coincident with the thin nebular shell or most likely with the
leading edge of the nebula. The WR nebulae in our sample present different
morphologies that we classified into well defined WR bubbles (bubble -type nebulae), clumpy and/or disrupted shells (clumpy/disrupted -type nebulae), and material mixed with the diffuse medium (mixed -type nebulae). The variety of morphologies presented by WR nebulae shows a
loose correlation with the central star spectral type, implying that the
nebular and stellar evolutions are not simple and may proceed according to
different sequences and time-lapses. We report the discovery of an obscured
shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy
and Astrophysic
Scalar Field Dark Matter: behavior around black holes
We present the numerical evolution of a massive test scalar fields around a
Schwarzschild space-time. We proceed by using hyperboloidal slices that
approach future null infinity, which is the boundary of scalar fields, and also
demand the slices to penetrate the event horizon of the black hole. This
approach allows the scalar field to be accreted by the black hole and to escape
toward future null infinity. We track the evolution of the energy density of
the scalar field, which determines the rate at which the scalar field is being
diluted. We find polynomial decay of the energy density of the scalar field,
and use it to estimate the rate of dilution of the field in time. Our findings
imply that the energy density of the scalar field decreases even five orders of
magnitude in time scales smaller than a year. This implies that if a
supermassive black hole is the Schwarzschild solution, then scalar field dark
matter would be diluted extremely fastComment: 15 pages, 21 eps figures. Appendix added, accepted for publication in
JCA
Gate induced enhancement of spin-orbit coupling in dilute fluorinated graphene
We analyze the origin of spin-orbit coupling (SOC) in fluorinated graphene
using Density Functional Theory (DFT) and a tight-binding model for the
relevant orbitals. As it turns out, the dominant source of SOC is the atomic
spin-orbit of fluorine adatoms and not the impurity induced SOC based on the
distortion of the graphene plane as in hydrogenated graphene. More
interestingly, our DFT calculations show that SOC is strongly affected by both
the type and concentrations of the graphene's carriers, being enhanced by
electron doping and reduced by hole doping. This effect is due to the charge
transfer to the fluorine adatom and the consequent change in the
fluorine-carbon bonding. Our simple tight-binding model, that includes the SOC
of the orbitals of F and effective parameters based on maximally localized
Wannier functions, is able to account for the effect. The strong enhancement of
the SOC induced by graphene doping opens the possibility to tune the spin
relaxation in this material.Comment: 9 pages, 8 figure
Thermochromism of Model Organic Aerosol Matter
Laboratory experiments show that the optical absorptivity of model organic matter is not an intrinsic property, but a strong function of relative humidity, temperature, and insolation. Suites of representative polyfunctional C_(x)H_(y)O_(z) oligomers in water develop intense visible absorptions upon addition of inert electrolytes. The resulting mixtures reach mass absorption cross sections σ(532 nm) ~ 0.1 m^(2)/gC in a few hours, absorb up to 9 times more solar radiation than the starting material, can be half-bleached by noon sunlight in ~ 1 h, and can be repeatedly recycled without carbon loss. Visible absorptions red-shift and evolve increasingly faster in subsequent thermal aging cycles. Thermochromism and its strong direct dependences on ionic strength and temperature are ascribed to the dehydration of >CH−C(OH)C═C< unsaturations by a polar E1 mechanism, and bleaching to photoinduced retrohydration. These transformations are deemed to underlie the daily cycles of aerosol absorption observed in the field, and may introduce a key feedback in the earth’s radiative balance
Diffusion of fluorine adatoms on doped graphene
We calculate the diffusion barrier of fluorine adatoms on doped graphene in
the diluted limit using Density Functional Theory. We found that the barrier
strongly depends on the magnitude and character of the graphene's
doping (): it increases for hole doping () and decreases
for electron doping (). Near the neutrality point the functional
dependence can be approximately by where
meVcm. This effect leads to significant
changes of the diffusion constant with doping even at room temperature and
could also affect the low temperature diffusion dynamics due to the presence of
substrate induced charge puddles. In addition, this might open up the
possibility to engineer the F dynamics on graphene by using local gates.Comment: 4 pages, 4 figure
Nearby Clumpy, Gas Rich, Star Forming Galaxies: Local Analogs of High Redshift Clumpy Galaxies
Luminous compact blue galaxies (LCBGs) have enhanced star formation rates and
compact morphologies. We combine Sloan Digital Sky Survey data with HI data of
29 LCBGs at redshift z~0 to understand their nature. We find that local LCBGs
have high atomic gas fractions (~50%) and star formation rates per stellar mass
consistent with some high redshift star forming galaxies. Many local LCBGs also
have clumpy morphologies, with clumps distributed across their disks. Although
rare, these galaxies appear to be similar to the clumpy star forming galaxies
commonly observed at z~1-3. Local LCBGs separate into three groups: 1.
Interacting galaxies (~20%); 2. Clumpy spirals (~40%); 3. Non-clumpy,
non-spirals with regular shapes and smaller effective radii and stellar masses
(~40%). It seems that the method of building up a high gas fraction, which then
triggers star formation, is not the same for all local LCBGs. This may lead to
a dichotomy in galaxy characteristics. We consider possible gas delivery
scenarios and suggest that clumpy spirals, preferentially located in clusters
and with companions, are smoothly accreting gas from tidally disrupted
companions and/or intracluster gas enriched by stripped satellites. Conversely,
as non-clumpy galaxies are preferentially located in the field and tend to be
isolated, we suggest clumpy, cold streams, which destroy galaxy disks and
prevent clump formation, as a likely gas delivery mechanism for these systems.
Other possibilities include smooth cold streams, a series of minor mergers, or
major interactions.Comment: 22 pages, 5 figure
Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations
Recent work from our research group has demonstrated that symmetry-projected
Hartree--Fock (HF) methods provide a compact representation of molecular ground
state wavefunctions based on a superposition of non-orthogonal Slater
determinants. The symmetry-projected ansatz can account for static correlations
in a computationally efficient way. Here we present a variational extension of
this methodology applicable to excited states of the same symmetry as the
ground state. Benchmark calculations on the C dimer with a modest basis
set, which allows comparison with full configuration interaction results,
indicate that this extension provides a high quality description of the
low-lying spectrum for the entire dissociation profile. We apply the same
methodology to obtain the full low-lying vertical excitation spectrum of
formaldehyde, in good agreement with available theoretical and experimental
data, as well as to a challenging model insertion pathway for BeH.
The variational excited state methodology developed in this work has two
remarkable traits: it is fully black-box and will be applicable to fairly large
systems thanks to its mean-field computational cost
The IRAM-30m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas
Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively
easily detected in our Galaxy and in other galaxies. We constrain their
chemistry through observations of two positions in the Horsehead edge: the
photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just
behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some
of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We
derived column densities and abundances through Bayesian analysis using a large
velocity gradient radiative transfer model. We report the first clear detection
of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and
6 at the dense core position, and we resolved its hyperfine structure for 3
lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR
position. We computed new electron collisional rate coefficients for CH3CN, and
we found that including electron excitation reduces the derived column density
by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR
than in the dense core, HC3N has similar abundance at both positions. The
isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase
chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated
gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of
grains are destroyed through photo-desorption or thermal-evaporation in PDRs,
and through sputtering in shocks. (abridged)Comment: Accepted for publication in Astronomy & Astrophysic
- …