3,458 research outputs found

    Scalar Field Dark Matter: head-on interaction between two structures

    Get PDF
    In this manuscript we track the evolution of a system consisting of two self-gravitating virialized objects made of a scalar field in the newtonian limit. The Schr\"odinger-Poisson system contains a potential with self-interaction of the Gross-Pitaevskii type for Bose Condensates. Our results indicate that solitonic behavior is allowed in the scalar field dark matter model when the total energy of the system is positive, that is, the two blobs pass through each other as should happen for solitons; on the other hand, there is a true collision of the two blobs when the total energy is negative.Comment: 8 revtex pages, 11 eps figures. v2 matches the published version. v2=v1+ref+minor_change

    Scalar Field Dark Matter: non-spherical collapse and late time behavior

    Get PDF
    We show the evolution of non-spherically symmetric balls of a self-gravitating scalar field in the Newtonian regime or equivalently an ideal self-gravitating condensed Bose gas. In order to do so, we use a finite differencing approximation of the Shcr\"odinger-Poisson (SP) system of equations with axial symmetry in cylindrical coordinates. Our results indicate: 1) that spherically symmetric ground state equilibrium configurations are stable against non-spherical perturbations and 2) that such configurations of the SP system are late-time attractors for non-spherically symmetric initial profiles of the scalar field, which is a generalization of such behavior for spherically symmetric initial profiles. Our system and the boundary conditions used, work as a model of scalar field dark matter collapse after the turnaround point. In such case, we have found that the scalar field overdensities tolerate non-spherical contributions to the profile of the initial fluctuation.Comment: 8 revtex pages, 10 eps figures. Accepted for publication in PR

    A close look into an intermediate redshift galaxy using STIS

    Get PDF
    We present a detailed view of a galaxy at z=0.4 which is part of a large database of intermediate redshifts using high resolution images. We used the STIS parallel images and spectra to identify the object and obtain the redshift. The high resolution STIS image (0.05'') enabled us to analyse the internal structures of this galaxy. A bar along the major axis and hot-spots of star formation separated by 0.37'' (1.6 kpc) are found along the inner region of the galaxy. The analysis of the morphology of faint galaxies like this one is an important step towards estimating the epoch of formation of the Hubble classification sequence.Comment: Astronomy and Astrophysics Letter - accepte

    Internal Kinematics of Luminous Compact Blue Galaxies

    Full text link
    We describe the dynamical properties which may be inferred from HST/STIS spectroscopic observations of luminous compact blue galaxies (LCBGs) between 0.1<z<0.7. While the sample is homogeneous in blue rest-frame color, small size and line-width, and high surface-brightness, their detailed morphology is eclectic. Here we determine the amplitude of rotation versus random, or disturbed motions of the ionized gas. This information affirms the accuracy of dynamical mass and M/L estimates from Keck integrated line-widths, and hence also the predictions of the photometric fading of these unusual galaxies. The resolved kinematics indicates this small subset of LCBGs are dynamically hot, and unlikely to be embedded in disk systems.Comment: To appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    A Robust Constrained Reference Governor Approach using Linear Matrix Inequalities

    Get PDF
    The purpose of this paper is to examine and provide a solution to the output reference tracking problem for uncertain systems subject to input saturation. As well-known, input saturation and modelling errors are very common problems at industry, where control schemes are implemented without accounting for such problems. In many cases, it is sometimes difficult to modify the existing implemented control schemes being necessary to provide them with external supervisory control approaches in order to tackle problems with constraints and modelling errors. In this way, a cascade structure is proposed, combining an inner loop containing any proper controller with an outer loop where a generalized predictive controller (GPC) provides adequate references for the inner loop considering input saturations and uncertainties. Therefore, the contribution of this paper consists in providing a state space representation for the inner loop and using linear matrix inequalities (LMI) to obtain a predictive state-vector feedback in such a way that the input reference for the inner loop is calculated to satisfy robust tracking specifications considering input saturations. Hence, the final proposed solution consists in solving a regulation problem to a fixed reference value subjected to a set of constraints described by several LMI and bilinear matrix inequalities (BMI). The main contribution of the paper is that the proposed solution is a non-linear setpoint tracking approach, that is, it is allowed that the system goes into saturation facing the problem of setpoint tracking instead of regulating to the origin. An illustrative numerical example is presented.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-01/0

    Scalar Field Dark Matter: behavior around black holes

    Full text link
    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fastComment: 15 pages, 21 eps figures. Appendix added, accepted for publication in JCA

    Effective shell model Hamiltonians from density functional theory: quadrupolar and pairing correlations

    Full text link
    We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field theory.Comment: 15 pages, 5 figure
    corecore