2,866 research outputs found
The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)
We present an overview of the EXoplanetary Circumstellar Environments and
Disk Explorer (EXCEDE), selected by NASA for technology development and
maturation. EXCEDE will study the formation, evolution and architectures of
exoplanetary systems, and characterize circumstellar environments into stellar
habitable zones. EXCEDE provides contrast-limited scattered-light detection
sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller
effective inner working angle (IWA), thus enabling the exploration and
characterization of exoplanetary circumstellar disks in currently inaccessible
domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase
Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm
diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will
deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or
140 mas with a wavefront control system utilizing a 2000-element MEMS DM and
fast steering mirror. EXCEDE will provide 120 mas spatial resolution at 0.4
microns with dust detection sensitivity to levels of a few tens of zodis with
two-band imaging polarimetry. EXCEDE is a science-driven technology pathfinder
that will advance our understanding of the formation and evolution of
exoplanetary systems, placing our solar system in broader astrophysical
context, and will demonstrate the high contrast technologies required for
larger-scale follow-on and multi-wavelength investigations on the road to
finding and characterizing exo-Earths in the years ahead
Beating the teapot effect
We investigate the dripping of liquids around solid surfaces in the regime of
inertial flows, a situation commonly encountered with the so-called "teapot
effect". We demonstrate that surface wettability is an unexpected key factor in
controlling flow separation and dripping, the latter being completely
suppressed in the limit of superhydrophobic substrates. This unforeseen
coupling is rationalized in terms of a novel hydro-capillary adhesion
framework, which couples inertial flows to surface wettability effects. This
description of flow separation successfully captures the observed dependence on
the various experimental parameters - wettability, flow velocity, solid surface
edge curvature-. As a further illustration of this coupling, a real-time
control of dripping is demonstrated using electro-wetting for contact angle
actuation.Comment: 4 pages; movies at http://lpmcn.univ-lyon1.fr/~lbocque
Space-time estimation of a particle system model
13 pagesLet X be a discrete time contact process (CP) on the discrete bidimensional lattice as define by Durett - Levin (1994) . We study estimation of the model based on space-time evolution on a finite subset of sites. For this, we make use of a marginal pseudo-likelihood. The estimator obtained is consistent and asymptoticaly normal for non-vanishing supercritical CP. Numerical studies confirm these results
Efficient simulation of non-crossing fibers and chains in a hydrodynamic solvent
An efficient simulation method is presented for Brownian fiber suspensions,
which includes both uncrossability of the fibers and hydrodynamic interactions
between the fibers mediated by a mesoscopic solvent. To conserve hydrodynamics,
collisions between the fibers are treated such that momentum and energy are
conserved locally. The choice of simulation parameters is rationalised on the
basis of dimensionless numbers expressing the relative strength of different
physical processes. The method is applied to suspensions of semiflexible fibers
with a contour length equal to the persistence length, and a mesh size to
contour length ratio ranging from 0.055 to 0.32. For such fibers the effects of
hydrodynamic interactions are observable, but relatively small. The
non-crossing constraint, on the other hand, is very important and leads to
hindered displacements of the fibers, with an effective tube diameter in
agreement with recent theoretical predictions. The simulation technique opens
the way to study the effect of viscous effects and hydrodynamic interactions in
microrheology experiments where the response of an actively driven probe bead
in a fiber suspension is measured.Comment: 12 pages, 2 tables, 5 figure
Experimental study of a low-order wavefront sensor for the high-contrast coronagraphic imager EXCEDE
The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk
Explorer), selected by NASA for technology development, is designed to study
the formation, evolution and architectures of exoplanetary systems and
characterize circumstellar environments into stellar habitable zones. It is
composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude
Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror,
capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One
of the key challenges to achieve those contrasts is to remove low-order
aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment
simulating the starlight suppression system is currently developed at NASA Ames
Research Center, and includes a LOWFS controlling tip/tilt modes in real time
at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3
lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2
and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently
implemented to improve even more that result by reducing residual vibrations.
This testbed shows that a good knowledge of the low-order disturbances is a key
asset for high contrast imaging, whether for real-time control or for post
processing.Comment: 12 pages, 20 figures, proceeding of the SPIE conference
Optics+Photonics, San Diego 201
Zenithal bistability in a nematic liquid crystal device with a monostable surface condition
The ground-state director configurations in a grating-aligned, zenithally bistable nematic device are calculated in two dimensions using a Q tensor approach. The director profiles generated are well described by a one-dimensional variation of the director across the width of the device, with the distorted region near the grating replaced by an effective surface anchoring energy. This work shows that device bistability can in fact be achieved by using a monostable surface term in the one-dimensional model. This implies that is should be possible to construct a device showing zenithal bistability without the need for a micropatterned surface
Personalized Pancreatic Tumor Growth Prediction via Group Learning
Tumor growth prediction, a highly challenging task, has long been viewed as a
mathematical modeling problem, where the tumor growth pattern is personalized
based on imaging and clinical data of a target patient. Though mathematical
models yield promising results, their prediction accuracy may be limited by the
absence of population trend data and personalized clinical characteristics. In
this paper, we propose a statistical group learning approach to predict the
tumor growth pattern that incorporates both the population trend and
personalized data, in order to discover high-level features from multimodal
imaging data. A deep convolutional neural network approach is developed to
model the voxel-wise spatio-temporal tumor progression. The deep features are
combined with the time intervals and the clinical factors to feed a process of
feature selection. Our predictive model is pretrained on a group data set and
personalized on the target patient data to estimate the future spatio-temporal
progression of the patient's tumor. Multimodal imaging data at multiple time
points are used in the learning, personalization and inference stages. Our
method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on
a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD
13.9% +- 9.8% obtained by a previous state-of-the-art model-based method
- …