338 research outputs found

    The Chromosome-Level Genome Assembly of European Grayling Reveals Aspects of a Unique Genome Evolution Process Within Salmonids

    Get PDF
    Salmonids represent an intriguing taxonomical group for investigating genome evolution in vertebrates due to their relatively recent last common whole genome duplication event, which occurred between 80 and 100 million years ago. Here, we report on the chromosome-level genome assembly of European grayling (Thymallus thymallus), which represents one of the earliest diverged salmonid subfamilies. To achieve this, we first generated relatively long genomic scaffolds by using a previously published draft genome assembly along with long-read sequencing data and a linkage map. We then merged those scaffolds by applying synteny evidence from the Atlantic salmon (Salmo salar) genome. Comparisons of the European grayling genome assembly to the genomes of Atlantic salmon and Northern pike (Esox lucius), the latter used as a nonduplicated outgroup, detailed aspects of the characteristic chromosome evolution process that has taken place in European grayling. While Atlantic salmon and other salmonid genomes are portrayed by the typical occurrence of numerous chromosomal fusions, European grayling chromosomes were confirmed to be fusion-free and were characterized by a relatively large proportion of paracentric and pericentric inversions. We further reported on transposable elements specific to either the European grayling or Atlantic salmon genome, on the male-specific sdY gene in the European grayling chromosome 11A, and on regions under residual tetrasomy in the homeologous European grayling chromosome pairs 9A-9B and 25A-25B. The same chromosome pairs have been observed under residual tetrasomy in Atlantic salmon and in other salmonids, suggesting that this feature has been conserved since the subfamily split

    First principles electronic structure of spinel LiCr2O4: A possible half-metal?

    Full text link
    We have employed first-principles electronic structure calculations to examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5} electronic configuration. The cell (cubic) and internal (oxygen position) structural parameters have been obtained for this compound through structural relaxation in the first-principles framework. Within the one-electron band picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The electronic structure is substantially different from the closely related and well known rutile half-metal CrO2. In particular, we find a smaller conduction band width in the spinel compound, perhaps as a result of the distinct topology of the spinel crystal structure, and the reduced oxidation state. The magnetism and half-metallicity of LiCr2O4 has been mapped in the parameter space of its cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}), heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest the effectiveness of a nearly-rigid band picture involving simple shifts of the position of E_F in these very different materials. Comparisons are also made with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR

    Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    Get PDF
    International audiencePlasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing

    Establishing Streptomycin Epidemiological Cut-Off Values for Salmonella and Escherichia coli

    Get PDF
    This study was conducted to elucidate the accuracy of the current streptomycin epidemiological cut-off value (ECOFF) for Escherichia coli and Salmonella spp. A total of 236 Salmonella enterica and 208 E. coli isolates exhibiting MICs between 4 and 32¿mg/L were selected from 12 countries. Isolates were investigated by polymerase chain reaction for aadA, strA, and strB streptomycin resistance genes. Out of 236 Salmonella isolates, 32 (13.5%) yielded amplicons for aadA (n¿=¿23), strA (n¿=¿9), and strB (n¿=¿11). None of the 60 Salmonella isolates exhibiting MIC 4¿mg/L harbored resistance genes. Of the Salmonella isolates exhibiting MICs 8¿mg/L, 16¿mg/L, and 32¿mg/L, 1.6%, 15%, and 39%, respectively, tested positive for one or more genes. For most monitoring programs, the streptomycin ECOFF for Salmonella is wild type (WT) =32 or =16¿mg/L. A cut-off value of WT =32¿mg/L would have misclassified 13.5% of the strains as belonging to the WT population, since this proportion of strains harbored resistance genes and exhibited MICs =32¿mg/L. Out of 208 E. coli strains, 80 (38.5%) tested positive for aadA (n¿=¿69), strA (n¿=¿18), and strB (n¿=¿31). Of the E. coli isolates exhibiting MICs of 4¿mg/L, 8¿mg/L, 16¿mg/L, and 32¿mg/L, 3.6%, 17.6%, 53%, and 82.3%, respectively, harbored any of the three genes. Based on the European Committee on Antimicrobial Susceptibility Testing guidelines (ECOFF =16¿mg/L), 25% of the E. coli strains presenting MIC =16¿mg/L would have been incorrectly categorized as belonging to the WT population. The authors recommend an ECOFF value of WT =16¿mg/L for Salmonella and WT =8¿mg/L for E. coli

    Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    Get PDF
    Background and aim: Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between ampli-cons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. © 2018, European Centre for Disease Prevention and Control (ECDC). All rights reserved

    The rise and fall of the ancient northern pike master sex determining gene

    Get PDF
    The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex-linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y-chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions
    corecore