14 research outputs found

    Non-specific activities of the major herbicide-resistance gene BAR

    Get PDF
    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops1-4. Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids1, indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes5,6. Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.Searle Scholars Progra

    Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner

    Full text link
    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality

    Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomato

    Full text link
    Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond senescence-associated Chl degradation that, when compromised, affects isoprenoid and carbon metabolism which ultimately alters the fruit's nutraceutical content

    Chlorophyll and Chlorophyll Catabolite Analysis by HPLC

    Full text link
    The most obvious event of leaf senescence is the loss of chlorophyll. Chlorophyll degradation proceeds in a well-characterized pathway that, although being common to higher plants, yields a species-specific set of chlorophyll catabolites, termed phyllobilins. Analysis of chlorophyll degradation and phyllobilin accumulation by high-performance liquid chromatography (HPLC) is a valuable tool to investigate senescence processes in plants. In this chapter, methods for the extraction, separation, and quantification of chlorophyll and its degradation products are described. Because of their different physicochemical properties, chlorin-type pigments (chlorophylls and magnesium-free pheo-pigments) and phyllobilins (linear tetrapyrroles) are analyzed separately. Specific spectral properties and polarity differences allow the identification of the different classes of known chlorins and phyllobilins. The methods provided facilitate the analysis of chlorophyll degradation and the identification of chlorophyll catabolites in a wide range of plant species, in different tissues, and under a variety of physiological conditions that involve loss of chlorophyll

    Data from: 'Prudent habitat choice': a novel mechanism of size-assortative mating

    No full text
    Assortative mating, an ubiquitous form of nonrandom mating, strongly impacts Darwinian fitness and can drive biological diversification. Despite its ecological and evolutionary importance, the behavioural processes underlying assortative mating are often unknown, and in particular, mechanisms not involving mate choice have been largely ignored so far. Here, we propose that assortative mating can arise from ‘prudent habitat choice’, a general mechanism that acts under natural selection, and that it can occur despite a complete mixing of phenotypes. We show that in the cichlid Eretmodus cyanostictus size-assortative mating ensues, because individuals of weaker competitive ability ignore high-quality but strongly competed habitat patches. Previous studies showed that in E. cyanostictus, size-based mate preferences are absent. By field and laboratory experiments, here we showed that (i) habitat quality and body size are correlated in this species; (ii) territories with more stone cover are preferred by both sexes in the absence of competition; and (iii) smaller fish prudently occupy vacant territories of worse quality than do larger fish. Prudent habitat choice is likely to be a widespread mechanism of assortative mating, as both preferences for and dominance-based access to high-quality habitats are generic phenomena in animals

    Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown

    Full text link
    During leaf senescence and fruit ripening, chlorophyll is degraded in a multistep pathway into linear tetrapyrroles called phyllobilins. A key feature of chlorophyll breakdown is the removal of the hydrophobic phytol chain that renders phyllobilins water soluble, an important prerequisite for their ultimate storage in the vacuole of senescent cells. Chlorophyllases had been considered for more than a century to catalyze dephytylation in vivo; however, this was recently refuted. Instead, pheophytinase was discovered as a genuine in vivo phytol hydrolase. While chlorophyllase acts rather unspecifically towards different porphyrin substrates, pheophytinase was shown to specifically dephytylate pheophytin, namely Mg-free chlorophyll. The aim of this work was to elucidate in detail the biochemical and structural properties of pheophytinase. By testing different porphyrin substrates with recombinant pheophytinase from Arabidopsis thaliana we show that pheophytinase has high specificity for the acid moiety of the ester bond, namely the porphyrin ring, while the nature of the alcohol, namely the phytol chain in pheophytin, is irrelevant. In silico modelling of the 3-dimensional structure of pheophytinase and subsequent analysis of site-directed pheophytinase mutant forms allowed the identification of the serine, histidine, and aspartic acid residues that compose the catalytic triad, a classical feature of serine-type hydrolases to which both pheophytinase and chlorophyllase belong. Based on substantial structural differences in the models of Arabidopsis pheophytinase and chlorophyllase 1, we discuss potential differences in the catalytic properties of these two phytol hydrolases

    Data for Taborsky, Guyer & Demus, J EvolBiol

    No full text
    There are three Excel Worksheets. Worksheet 'total length males females' gives the total lengths of undisturbed pairs measured in 2005 and 2006 under water in Lake Tanganyika (refers to the data used for supplementary Figure S3 if Taborsky et al., JEB). Worksheet 'total length & habitat quality' gives data of total length of males and females of 30 pairs and the stone cover present in the territories of these pairs (refers to analysis in section "Do larger fish occupy territories with more stone cover?" of the Results in Taborsky et al., JEB.Worksheet 'Habitat manipulation' gives the total lengths of original and final pairs and the stone cover data before and after manipulation of the habitat manipulation experiment (analysis in section "Does territory stone cover predict the size of settling fish?"
    corecore