81 research outputs found

    Stochastic bias-correction of daily rainfall scenarios for hydrological applications

    Get PDF
    The accuracy of rainfall predictions provided by climate models is crucial for the assessment of climate change impacts on hydrological processes. In fact, the presence of bias in downscaled precipitation may produce large bias in the assessment of soil moisture dynamics, river flows and groundwater recharge. <br><br> In this study, a comparison between statistical properties of rainfall observations and model control simulations from a Regional Climate Model (RCM) was performed through a robust and meaningful representation of the precipitation process. The output of the adopted RCM was analysed and re-scaled exploiting the structure of a stochastic model of the point rainfall process. In particular, the stochastic model is able to adequately reproduce the rainfall intermittency at the synoptic scale, which is one of the crucial aspects for the Mediterranean environments. Possible alteration in the local rainfall regime was investigated by means of the historical daily time-series from a dense rain-gauge network, which were also used for the analysis of the RCM bias in terms of dry and wet periods and storm intensity. The result is a stochastic scheme for bias-correction at the RCM-cell scale, which produces a realistic representation of the daily rainfall intermittency and precipitation depths, though a residual bias in the storm intensity of longer storm events persists

    Climate change and water abstraction impacts on the long-term variability of water levels in Lake Bracciano (Central Italy): A Random Forest approach

    Get PDF
    Abstract Study Region Lake Bracciano has been historically used as a strategic water reservoir for the city of Rome (Italy) since ancient times. However, following the severe water crisis of 2017, water abstraction has been completely stopped. Study Focus The relative impact of the various drivers of change (climatological and management) on fluctuations in lake water level is not yet clear. To quantify this impact, we applied the Random Forest (RF) machine learning approach, taking advantage of a century of observations. New Hydrological Insights for the Region Since the late 1990s the monthly variation in lake water levels has doubled, as has variation in monthly abstraction. Increased variation in annual cumulated precipitation and a rise in mean air temperature have also been observed. The RF machine learning approach made it possible to confirm the marginal role of temperature, the increasing role of abstraction during the last two decades (from 24 % to 39 %), and the key role played by the increased precipitation variability. These results highlight the notable prediction and inference capabilities of RF in a complex and partially unknown hydrological context. We conclude by discussing the limits of this approach, which are mainly associated with its capacity to generates scenarios compared to physical based models

    Benefits from using combined dynamical-statistical downscaling approaches - Lessons from a case study in the Mediterranean region

    Get PDF
    Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to assess whether a DD processing performed before the SD permits to obtain more suitable climate scenarios for basin scale hydrological applications starting from GCM simulations. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterised by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile correction. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modelled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the spatial heterogeneity of trends and the long-term time evolution predicted by the GCM. The best results were obtained through the combination of both DD and SD approaches

    Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal

    Get PDF
    This study explores the link between area increase of Imja Tsho (Lake) and changes of Imja Glacier (area ∼25km2) under the influence of climate change using multitemporal satellite imagery and local climate data. Between 1962 and 2013, Imja Lake expanded from 0.03±0.01 to 1.35±0.05 km2 at a rate of 0.026±0.001 km2 a-1. The mean glacier-wide flow velocity was 37±30ma-1 during 1992-93 and 23±15ma-1 during 2013-14, indicating a decreasing velocity. A mean elevation change of -1.29±0.71ma-1 was observed over the lower part of the glacier in the period 2001-14, with a rate of -1.06±0.63ma-1 in 2001-08 and -1.56±0.80ma-1 in 2008-14. We conclude that the decrease in flow velocity is mainly associated with reduced accumulation due to a decrease in precipitation during the last few decades. Furthermore, glacier ablation has increased due to increasing maximum temperatures during the post-monsoon months. Decreased glacier flow velocities and increased mass losses induce the formation and subsequent expansion of glacial lakes under favourable topographic conditions.Publisher PDFPeer reviewe

    Deep-Ocean dissolved organic matter reactivity along the Mediterranea Sea: does size matter?

    Get PDF
    Original research paperDespite of the major role ascribed to marine dissolved organic matter (DOM) in the global carbon cycle, the reactivity of this pool in the dark ocean is still poorly understood. Present hypotheses, posed within the size-reactivity continuum (SRC) and the microbial carbon pump (MCP) conceptual frameworks, need further empirical support. Here, we provide field evidence of the soundness of the SRC model. We sampled the high salinity core-of-flow of the Levantine Intermediate Water along its westward route through the entire Mediterranean Sea. At selected sites, DOM was size-fractionated in apparent high (aHMW) and low (aLMW) molecular weight fractions using an efficient ultrafiltration cell. A percentage decline of the aHMW DOM from 68–76% to 40–55% was observed from the Levantine Sea to the Strait of Gibraltar in parallel with increasing apparent oxygen utilization (AOU). DOM mineralization accounted for 30±3% of the AOU, being the aHMW fraction solely responsible for this consumption, verifying the SRC model in the field. We also demonstrate that, in parallel to this aHMW DOM consumption, fluorescent humic-like substances accumulate in both fractions and protein-like substances decline in the aLMW fraction, thus indicating that not only size matters and providing field support to the MCP modelHOTMIX (grant number CTM2011–30010-C02 01-MAR and 02-MAR) and the project FERMIO (MINECO, CTM2014-57334-JIN), both co-financed with FEDER funds; (reference BES-2012- 056175) from the Spanish Ministry of Economy, Industry and Competitivenes; the project MODMED from CSIC (PIE, 201730E020) and CSIC Program “Junta para la Ampliación de Estudios” co-financed by the ESF (reference JAE DOC 040)Versión del editor2,92

    Le paludisme d'importation à Dijon (aspects cliniques, biologiques, parasitologiques et thérapeutiques)

    No full text
    DIJON-BU Médecine Pharmacie (212312103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Prise en charge thérapeutique des nausées et vomissements de la grossesse

    No full text
    Les nausées et vomissements représentent une symptomatologie très fréquente du début de la grossesse. Ils sont le plus souvent d'évolution bénigne et disparaissent spontanément à la fin du premier trimestre de grossesse. Chez environ 10% des femmes, ces symptômes persistent durant le second trimestre de grossesse, et chez 3% durant le troisième trimestre. Dans 0.3% à 2% des grossesses, il existe de rares formes sévères appelées vomissements incoercibles ou hyperemesis gravidarum, susceptibles d'entraîner des complications. Ce travail a pour but de rappeler les points essentiels concernant l'épidémiologie, la pathogénie, le diagnostic, mais aussi de présenter l'essentiel des connaissances et évaluations de l'actuel arsenal thérapeutique disponible pour traiter les nausées et vomissements de la grossesse en France.TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF
    corecore