14 research outputs found

    pARIS-htt: an optimised expression platform to study huntingtin reveals functional domains required for vesicular trafficking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntingtin (htt) is a multi-domain protein of 350 kDa that is mutated in Huntington's disease (HD) but whose function is yet to be fully understood. This absence of information is due in part to the difficulty of manipulating large DNA fragments by using conventional molecular cloning techniques. Consequently, few studies have addressed the cellular function(s) of full-length htt and its dysfunction(s) associated with the disease.</p> <p>Results</p> <p>We describe a flexible synthetic vector encoding full-length htt called pARIS-htt (<b>A</b>daptable, <b>R</b>NAi <b>I</b>nsensitive &<b>S</b>ynthetic). It includes synthetic cDNA coding for full-length human htt modified so that: 1) it is improved for codon usage, 2) it is insensitive to four different siRNAs allowing gene replacement studies, 3) it contains unique restriction sites (URSs) dispersed throughout the entire sequence without modifying the translated amino acid sequence, 4) it contains multiple cloning sites at the N and C-ter ends and 5) it is Gateway compatible. These modifications facilitate mutagenesis, tagging and cloning into diverse expression plasmids. Htt regulates dynein/dynactin-dependent trafficking of vesicles, such as brain-derived neurotrophic factor (BDNF)-containing vesicles, and of organelles, including reforming and maintenance of the Golgi near the cell centre. We used tests of these trafficking functions to validate various pARIS-htt constructs. We demonstrated, after silencing of endogenous htt, that full-length htt expressed from pARIS-htt rescues Golgi apparatus reformation following reversible microtubule disruption. A mutant form of htt that contains a 100Q expansion and a htt form devoid of either HAP1 or dynein interaction domains are both unable to rescue loss of endogenous htt. These mutants have also an impaired capacity to promote BDNF vesicular trafficking in neuronal cells.</p> <p>Conclusion</p> <p>We report the validation of a synthetic gene encoding full-length htt protein that will facilitate analyses of its structure/function. This may help provide relevant information about the cellular dysfunctions operating during the disease. As proof of principle, we show that either polyQ expansion or deletion of key interacting domains within full-length htt protein impairs its function in transport indicating that HD mutation induces defects on intrinsic properties of the protein and further demonstrating the importance of studying htt in its full-length context.</p

    Modifications post-traductionnelles de la sous-unité régulatrice RIIa de la protéine kinase dépendante de l'AMP-cyclique au cours du cycle cellulaire

    No full text
    LE KREMLIN-B.- PARIS 11-BU Méd (940432101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    The centrosome-nucleus complex and microtubule organization in the <em>Drosophila </em>oocyte

    Get PDF
    Molecular motors transport the axis-determining mRNAs oskar, bicoid and gurken along microtubules (MTs) in the Drosophila oocyte. However, it remains unclear how the underlying MT network is organized and how this transport takes place. We have identified a centriole-containing centrosome close to the oocyte nucleus. Remarkably, the centrosomal components, -tubulin and Drosophila pericentrin-like protein also strongly accumulate at the periphery of this nucleus. MT polymerization after cold-induced disassembly in wild type and in gurken mutants suggests that in the oocyte the centrosome-nucleus complex is an active center of MT polymerization. We further report that the MT network comprises two perpendicular MT subsets that undergo dynamic rearrangements during oogenesis. This MT reorganization parallels the successive steps in localization of gurken and oskar mRNAs. We propose that in addition to a highly polarized microtubule scaffold specified by the cortex oocyte, the repositioning of the nucleus and its tightly associated centrosome could control MT reorganization and, hence, oocyte polarization

    Dissociating the Centrosomal Matrix Protein AKAP450 from Centrioles Impairs Centriole Duplication and Cell Cycle Progression

    No full text
    Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, γ-tubulin, or pericentrin. The centrosomal protein kinase A type II α was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction

    Part of Ran is associated with AKAP450 at the Centrosome: Involvement in microtubule-organizing activity

    No full text
    The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of γ-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not γ-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome
    corecore