715 research outputs found
Recommended from our members
A near real-time algorithm for flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy
Recommended from our members
Near real-time flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively
Recommended from our members
Near real-time flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-Xâs restricted visibility of the ground surface due to radar shadow and layover
Mapping the Sensitive Volume of an Ion-Counting Nanodosimeter
We present two methods of independently mapping the dimensions of the
sensitive volume in an ion-counting nanodosimeter. The first method is based on
a calculational approach simulating the extraction of ions from the sensitive
volume, and the second method on probing the sensitive volume with 250 MeV
protons. Sensitive-volume maps obtained with both methods are compared and
systematic errors inherent in both methods are quantified.Comment: 27 pages, 8 figures. Submitted to JINST, Jan. 16 200
Specific glial populations regulate hippocampal morphogenesis
The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis
A One-sided, Highly Relativistic Jet from Cygnus X-3
Very Long Baseline Array images of the X-ray binary, Cygnus X-3, were
obtained 2, 4 and 7 days after the peak of a 10 Jy flare on 4 February 1997.
The first two images show a curved one-sided jet, the third a scatter-broadened
disc, presumably at the position of the core. The jet curvature changes from
the first to the second epoch, which strongly suggests a precessing jet. The
ratio of the flux density in the approaching to that in the (undetected)
receding jet is > 330; if this asymmetry is due to Doppler boosting, the
implied jet speed is > 0.81c. Precessing jet model fits, together with the
assumptions that the jet is intrinsically symmetric and was ejected during or
after the major flare, yield the following constraints: the jet inclination to
the line of sight must be < 14 degrees; the cone opening angle must be < 12
degrees; and the precession period must be > 60 days.Comment: 12 pages 7 figures, accepted by Ap
Whole Genome Sequence Analysis of Salmonella Typhi Isolated in Thailand before and after the Introduction of a National Immunization Program.
Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly used by travellers, however, there are few examples of national immunization programs in endemic areas. There is therefore a paucity of data on the impact of typhoid immunization programs on localised populations of S. Typhi. Here we have used whole genome sequencing (WGS) to characterise 44 historical bacterial isolates collected before and after a national typhoid immunization program that was implemented in Thailand in 1977 in response to a large outbreak; the program was highly effective in reducing typhoid case numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or genotypes. Novel prophage and plasmids were also detected, including examples that were previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi genotypes observed prior to the immunization program were not observed following it. Post-vaccine era isolates were more closely related to S. Typhi isolated from neighbouring countries than to earlier Thai isolates, providing no evidence for the local persistence of endemic S. Typhi following the national immunization program. Rather, later cases of typhoid appeared to be caused by the occasional importation of common genotypes from neighbouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understanding the impacts of vaccination on pathogen populations and provide support for the proposal that large-scale typhoid immunization programs in endemic areas could result in lasting local disease elimination, although larger prospective studies are needed to test this directly
Probing the Cosmic Distance Duality Relation with the Sunyaev-Zeldovich Effect, X-rays Observations and Supernovae Ia
The angular diameter distances toward galaxy clusters can be determined with
measurements of the Sunyaev-Zel'dovich effect and X-ray surface brightness
combined with the validity of the distance-duality relation, , where and are, respectively, the
luminosity and angular diameter distances. This combination enables us to probe
galaxy cluster physics or even to test the validity of the distance-duality
relation itself. We explore these possibilities based on two different, but
complementary approaches. Firstly, in order to constrain the possible galaxy
cluster morphologies, the validity of the distance-duality relation (DD
relation) is assumed in the CDM framework (WMAP7). Secondly, by
adopting a cosmological-model-independent test, we directly confront the
angular diameters from galaxy clusters with two supernovae Ia (SNe Ia)
subsamples (carefully chosen to coincide with the cluster positions). The
influence of the different SNe Ia light-curve fitters in the previous analysis
are also discussed. We assumed that is a function of the redshift
parametrized by two different relations: , and
, where is a constant parameter
quantifying the possible departure from the strict validity of the DD relation.
The statistical analysis presented here provides new evidence that the true
geometry of clusters is elliptical. We find that the two-light curve fitters
(SALT2 and MLCS2K2) present a statistically significant conflict, and a joint
analysis involving the different approaches suggests that clusters are endowed
with an elliptical geometry as previously assumed.Comment: 33 pages, 15 figures, some typos corrected, accepted for publication
in the Astronomy \& Astrophysic
Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT
Achieving and maintaining global food security is challenged by changes in population, income, and climate, among other drivers. Assessing these challenges and possible solutions over the coming decades requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do long-run scenario analysis of the effects of climate change and various adaptation strategies. This system includes the core International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), which is linked to water models (global hydrology, water basin management, and water stress on crops) and crop simulation models. The Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI in collaboration with other CGIAR research centers, is working to improve these tools and conducting ex ante assessments of promising technologies, investments, and policies under alternative global futures. Baseline projections from IMPACT set the foundation with the latest outlook on long-term trends in food demand and agricultural production based on projected changes in population, income, technology, and climate. On top of the baseline, scenarios are developed for assessing the impacts of promising climate-adapted technologies for maize, wheat, rice, potatoes, sorghum, groundnut, and cassava on yields, area, production, trade, and prices in 2050 at a variety of scales. Yield gains from adoption of the selected technologies vary by technology and region, but are found to be generally comparable in scale to (and thus able to offset) the adverse effects of climate change under a high-emissions representative concentration pathway (RCP 8.5). Even more important in this long-term climate change scenario are effects of growth in population, income, and investments in overall technological change, highlighting the importance of linked assessment of biophysical and socioeconomic drivers to better understand climate impacts and responses. For all crops in the selected countries, climate change impacts are negative with the baseline technology. All new technologies have beneficial effects on yields under climate change, with combined traits (drought and heat tolerance) showing the greatest benefi
- âŠ