6 research outputs found

    A synthesis-based approach to compressive multi-contrast magnetic resonance imaging

    Get PDF
    In this study, we deal with the problem of image reconstruction from compressive measurements of multi-contrast magnetic resonance imaging (MRI). We propose a synthesis based approach for image reconstruction to better exploit mutual information across contrasts, while retaining individual features of each contrast image. For fast recovery, we propose an augmented Lagrangian based algorithm, using Alternating Direction Method of Multipliers (ADMM). We then compare the proposed algorithm to the state-of-the-art Compressive Sensing-MRI algorithms, and show that the proposed method results in better quality images in shorter computation time. © 2017 IEEE

    Signal recovery from partial fractional Fourier domain information and its applications

    Get PDF
    The problem of recovering signals from partial fractional Fourier transform information arises in wave propagation problems where the measured information is partial, spread over several observation planes, or not of sufficient spatial resolution or accuracy. This problem can be solved with the method of projections onto convex sets, with the convergence of the iterative algorithm being assured. Several prototypical application scenarios and simulation examples are presented. © The Institution of Engineering and Technology 2008

    Image reconstruction for Magnetic Particle Imaging using an Augmented Lagrangian Method

    Get PDF
    Magnetic particle imaging (MPI) is a relatively new imaging modality that images the spatial distribution of superparamagnetic iron oxide nanoparticles administered to the body. In this study, we use a new method based on Alternating Direction Method of Multipliers (a subset of Augmented Lagrangian Methods, ADMM) with total variation and l1 norm minimization, to reconstruct MPI images. We demonstrate this method on data simulated for a field free line MPI system, and compare its performance against the conventional Algebraic Reconstruction Technique. The ADMM improves image quality as indicated by a higher structural similarity, for low signal-to-noise ratio datasets, and it significantly reduces computation time. © 2017 IEEE

    A synthesis-based approach to compressive multi-contrast magnetic resonance imaging

    No full text
    In this study, we deal with the problem of image reconstruction from compressive measurements of multi-contrast magnetic resonance imaging (MRI). We propose a synthesis based approach for image reconstruction to better exploit mutual information across contrasts, while retaining individual features of each contrast image. For fast recovery, we propose an augmented Lagrangian based algorithm, using Alternating Direction Method of Multipliers (ADMM). We then compare the proposed algorithm to the state-of-the-art Compressive Sensing-MRI algorithms, and show that the proposed method results in better quality images in shorter computation time. © 2017 IEEE

    Compressed Multi-Contrast Magnetic Resonance Image reconstruction using Augmented Lagrangian Method [Sikistirilmis Çoklu-Kontrast Manyetik Rezonans Görüntülerinin Genisletilmis Lagrange Metodu ile Gerikazanimi]

    No full text
    In this paper, a Multi-Channel/Multi-Contrast image reconstruction algorithm is proposed. The method, which is based on the Augmented Lagrangian Method uses joint convex objective functions to utilize the mutual information in the data from multiple channels to improve reconstruction quality. For this purpose, color total variation and group sparsity are used. To evaluate the performance of the method, the algorithm is compared in terms of convergence speed and image quality using Magnetic Resonance Imaging data to FCSA-MT [1], an alternative approach on reconstructing multi-contrast MRI data. © 2016 IEEE
    corecore