1,479 research outputs found

    Semiclassical Green Function in Mixed Spaces

    Get PDF
    A explicit formula on semiclassical Green functions in mixed position and momentum spaces is given, which is based on Maslov's multi-dimensional semiclassical theory. The general formula includes both coordinate and momentum representations of Green functions as two special cases of the form.Comment: 8 pages, typeset by Scientific Wor

    Ab-initio Gutzwiller method: first application to Plutonium

    Get PDF
    Except for small molecules, it is impossible to solve many electrons systems without imposing severe approximations. If the configuration interaction approaches (CI) or Coupled Clusters techniques \cite{FuldeBook} are applicable for molecules, their generalization for solids is difficult. For materials with a kinetic energy greater than the Coulomb interaction, calculations based on the density functional theory (DFT), associated with the local density approximation (LDA) \cite{Hohenberg64, Kohn65} give satisfying qualitative and quantitative results to describe ground state properties. These solids have weakly correlated electrons presenting extended states, like spsp materials or covalent solids. The application of this approximation to systems where the wave functions are more localized (dd or ff-states) as transition metals oxides, heavy fermions, rare earths or actinides is more questionable and can even lead to unphysical results : for example, insulating FeO and CoO are predicted to be metalic by the DFT-LDA..

    Strong-coupling expansion for the Hubbard model in arbitrary dimension using slave bosons

    Get PDF
    A strong-coupling expansion for the antiferromagnetic phase of the Hubbard model is derived in the framework of the slave-boson mean-field approximation. The expansion can be obtained in terms of moments of the density of states of freely hopping electrons on a lattice, which in turn are obtained for hypercubic lattices in arbitrary dimension. The expansion is given for the case of half-filling and for the energy up to fifth order in the ratio of hopping integral tt over on-site interaction UU, but can straightforwardly be generalized to the non-half-filled case and be extended to higher orders in t/Ut/U. For the energy the expansion is found to have an accuracy of better than 1%1 \% for U/t8U/t \geq 8. A comparison is given with an earlier perturbation expansion based on the Linear Spin Wave approximation and with a similar expansion based on the Hartree-Fock approximation. The case of an infinite number of spatial dimensions is discussed.Comment: 12 pages, LaTeX2e, to be published in Phys. Rev.

    Trace Formulae for quantum graphs with edge potentials

    Full text link
    This work explores the spectra of quantum graphs where the Schr\"odinger operator on the edges is equipped with a potential. The scattering approach, which was originally introduced for the potential free case, is extended to this case and used to derive a secular function whose zeros coincide with the eigenvalue spectrum. Exact trace formulas for both smooth and δ\delta-potentials are derived, and an asymptotic semiclassical trace formula (for smooth potentials) is presented and discussed

    Ringing the eigenmodes from compact manifolds

    Full text link
    We present a method for finding the eigenmodes of the Laplace operator acting on any compact manifold. The procedure can be used to simulate cosmic microwave background fluctuations in multi-connected cosmological models. Other applications include studies of chaotic mixing and quantum chaos.Comment: 11 pages, 8 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    Periodic orbit quantization of a Hamiltonian map on the sphere

    Get PDF
    In a previous paper we introduced examples of Hamiltonian mappings with phase space structures resembling circle packings. It was shown that a vast number of periodic orbits can be found using special properties. We now use this information to explore the semiclassical quantization of one of these maps.Comment: 23 pages, REVTEX

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Spectral statistics for unitary transfer matrices of binary graphs

    Full text link
    Quantum graphs have recently been introduced as model systems to study the spectral statistics of linear wave problems with chaotic classical limits. It is proposed here to generalise this approach by considering arbitrary, directed graphs with unitary transfer matrices. An exponentially increasing contribution to the form factor is identified when performing a diagonal summation over periodic orbit degeneracy classes. A special class of graphs, so-called binary graphs, is studied in more detail. For these, the conditions for periodic orbit pairs to be correlated (including correlations due to the unitarity of the transfer matrix) can be given explicitly. Using combinatorial techniques it is possible to perform the summation over correlated periodic orbit pair contributions to the form factor for some low--dimensional cases. Gradual convergence towards random matrix results is observed when increasing the number of vertices of the binary graphs.Comment: 18 pages, 8 figure

    Adiabatic quantization of Andreev levels

    Get PDF
    We identify the time TT between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ\lambda), coupled to a superconductor by an NN-mode point contact. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods TnT_{n}, which in turn generate a ladder of excited states ϵnm=(m+1/2)π/Tn\epsilon_{nm}=(m+1/2)\pi\hbar/T_{n}. The largest quantized period is the Ehrenfest time T0=λ1lnNT_{0}=\lambda^{-1}\ln N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/NW/\sqrt{N}, much below the width WW of the point contact.Comment: 4 pages, 3 figure
    corecore