1,840 research outputs found
A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods
for exact enumerations of lattice objects. The new method is illustrated by an
application to the enumeration of self-avoiding polygons on the square lattice.
A detailed comparison with the previous best algorithm shows significant
improvement in the running time of the algorithm. The new algorithm is used to
extend the enumeration of polygons to length 130 from the previous record of
110.Comment: 17 pages, 8 figures, IoP style file
Directed percolation near a wall
Series expansion methods are used to study directed bond percolation clusters
on the square lattice whose lateral growth is restricted by a wall parallel to
the growth direction. The percolation threshold is found to be the same
as that for the bulk. However the values of the critical exponents for the
percolation probability and mean cluster size are quite different from those
for the bulk and are estimated by and respectively. On the other hand the exponent
characterising the scale of the cluster size
distribution is found to be unchanged by the presence of the wall.
The parallel connectedness length, which is the scale for the cluster length
distribution, has an exponent which we estimate to be and is also unchanged. The exponent of the mean
cluster length is related to and by the scaling
relation and using the above estimates
yields to within the accuracy of our results. We conjecture that
this value of is exact and further support for the conjecture is
provided by the direct series expansion estimate .Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.
Correction-to-scaling exponents for two-dimensional self-avoiding walks
We study the correction-to-scaling exponents for the two-dimensional
self-avoiding walk, using a combination of series-extrapolation and Monte Carlo
methods. We enumerate all self-avoiding walks up to 59 steps on the square
lattice, and up to 40 steps on the triangular lattice, measuring the
mean-square end-to-end distance, the mean-square radius of gyration and the
mean-square distance of a monomer from the endpoints. The complete endpoint
distribution is also calculated for self-avoiding walks up to 32 steps (square)
and up to 22 steps (triangular). We also generate self-avoiding walks on the
square lattice by Monte Carlo, using the pivot algorithm, obtaining the
mean-square radii to ~0.01% accuracy up to N = 4000. We give compelling
evidence that the first non-analytic correction term for two-dimensional
self-avoiding walks is Delta_1 = 3/2. We compute several moments of the
endpoint distribution function, finding good agreement with the field-theoretic
predictions. Finally, we study a particular invariant ratio that can be shown,
by conformal-field-theory arguments, to vanish asymptotically, and we find the
cancellation of the leading analytic correction.Comment: LaTeX 2.09, 56 pages. Version 2 adds a renormalization-group
discussion near the end of Section 2.2, and makes many small improvements in
the exposition. To be published in the Journal of Statistical Physic
Complex-Temperature Singularities in the Ising Model. III. Honeycomb Lattice
We study complex-temperature properties of the uniform and staggered
susceptibilities and of the Ising model on the honeycomb
lattice. From an analysis of low-temperature series expansions, we find
evidence that and both have divergent singularities at the
point (where ), with exponents
. The critical amplitudes at this
singularity are calculated. Using exact results, we extract the behaviour of
the magnetisation and specific heat at complex-temperature
singularities. We find that, in addition to its zero at the physical critical
point, diverges at with exponent , vanishes
continuously at with exponent , and vanishes
discontinuously elsewhere along the boundary of the complex-temperature
ferromagnetic phase. diverges at with exponent
and at (where ) with exponent , and
diverges logarithmically at . We find that the exponent relation
is violated at ; the right-hand side is 4
rather than 2. The connections of these results with complex-temperature
properties of the Ising model on the triangular lattice are discussed.Comment: 22 pages, latex, figures appended after the end of the text as a
compressed, uuencoded postscript fil
New Lower Bounds on the Self-Avoiding-Walk Connective Constant
We give an elementary new method for obtaining rigorous lower bounds on the
connective constant for self-avoiding walks on the hypercubic lattice .
The method is based on loop erasure and restoration, and does not require exact
enumeration data. Our bounds are best for high , and in fact agree with the
first four terms of the expansion for the connective constant. The bounds
are the best to date for dimensions , but do not produce good results
in two dimensions. For , respectively, our lower bound is within
2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0
Enumeration of self-avoiding walks on the square lattice
We describe a new algorithm for the enumeration of self-avoiding walks on the
square lattice. Using up to 128 processors on a HP Alpha server cluster we have
enumerated the number of self-avoiding walks on the square lattice to length
71. Series for the metric properties of mean-square end-to-end distance,
mean-square radius of gyration and mean-square distance of monomers from the
end points have been derived to length 59. Analysis of the resulting series
yields accurate estimates of the critical exponents and
confirming predictions of their exact values. Likewise we obtain accurate
amplitude estimates yielding precise values for certain universal amplitude
combinations. Finally we report on an analysis giving compelling evidence that
the leading non-analytic correction-to-scaling exponent .Comment: 24 pages, 6 figure
Effects of Eye-phase in DNA unzipping
The onset of an "eye-phase" and its role during the DNA unzipping is studied
when a force is applied to the interior of the chain. The directionality of the
hydrogen bond introduced here shows oscillations in force-extension curve
similar to a "saw-tooth" kind of oscillations seen in the protein unfolding
experiments. The effects of intermediates (hairpins) and stacking energies on
the melting profile have also been discussed.Comment: RevTeX v4, 9 pages with 7 eps figure
Self-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series
expansion, to extend the enumeration of self-avoiding walks and polygons on the
triangular lattice to length 40 and 60, respectively. For self-avoiding walks
to length 40 we also calculate series for the metric properties of mean-square
end-to-end distance, mean-square radius of gyration and the mean-square
distance of a monomer from the end points. For self-avoiding polygons to length
58 we calculate series for the mean-square radius of gyration and the first 10
moments of the area. Analysis of the series yields accurate estimates for the
connective constant of triangular self-avoiding walks, ,
and confirms to a high degree of accuracy several theoretical predictions for
universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure
Series studies of the Potts model. I: The simple cubic Ising model
The finite lattice method of series expansion is generalised to the -state
Potts model on the simple cubic lattice.
It is found that the computational effort grows exponentially with the square
of the number of series terms obtained, unlike two-dimensional lattices where
the computational requirements grow exponentially with the number of terms. For
the Ising () case we have extended low-temperature series for the
partition functions, magnetisation and zero-field susceptibility to
from . The high-temperature series for the zero-field partition
function is extended from to . Subsequent analysis gives
critical exponents in agreement with those from field theory.Comment: submitted to J. Phys. A: Math. Gen. Uses preprint.sty: included. 24
page
Size and area of square lattice polygons
We use the finite lattice method to calculate the radius of gyration, the
first and second area-weighted moments of self-avoiding polygons on the square
lattice. The series have been calculated for polygons up to perimeter 82.
Analysis of the series yields high accuracy estimates confirming theoretical
predictions for the value of the size exponent, , and certain
universal amplitude combinations. Furthermore, a detailed analysis of the
asymptotic form of the series coefficients provide the firmest evidence to date
for the existence of a correction-to-scaling exponent, .Comment: 12 pages 3 figure
- …
