We use new algorithms, based on the finite lattice method of series
expansion, to extend the enumeration of self-avoiding walks and polygons on the
triangular lattice to length 40 and 60, respectively. For self-avoiding walks
to length 40 we also calculate series for the metric properties of mean-square
end-to-end distance, mean-square radius of gyration and the mean-square
distance of a monomer from the end points. For self-avoiding polygons to length
58 we calculate series for the mean-square radius of gyration and the first 10
moments of the area. Analysis of the series yields accurate estimates for the
connective constant of triangular self-avoiding walks, μ=4.150797226(26),
and confirms to a high degree of accuracy several theoretical predictions for
universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure