280 research outputs found

    Disability Studies Pedagogy: Engaging Dissonance and Meaning Making

    Get PDF
    Student responses to disability studies pedagogy are influenced by the context in which they learn. This study examined student responses in two disability studies initiatives: one within a teacher preparation program that included American Indian students, the other within a stand alone, interdisciplinary course taken primarily by Americans of European descent. Course dialogue and students' written assignments were used to identify and categorize their responses. While some students readily engaged in critique of disability as culturally constructed, experiences of significant resistance related to positivist filters, adherence to individualism, and defense of identity-related norms. These responses are discussed as considerations for more effective pedagogy in this relatively new field

    Hg-supported phospholipid monolayer as rapid screening device for low molecular weight narcotic compounds in water

    Get PDF
    This study positions the fabricated Pt/Hg-supported phospholipid sensor element in the context of more conventional biomembrane-based screening platforms. The technology has been used together with immobilised artificial membrane (IAM) chromatography and COSMOmic simulation methods to screen the interaction of a series of low molecular weight narcotic organic compounds in water with phosphatidylcholine (PC) membranes. For these chemicals it is shown that toxicity to aquatic species is related to compound hydrophobicity which is associated with compound accumulation in the phospholipid membrane as modelled by IAM chromatography measurements and COSMOmic simulations. In contrast, the Hg-supported dioleoyl phosphatidylcholine (DOPC) sensor element records membrane damage/modification which is indirectly related to general toxicity and directly related to compound structure. Electrochemical limit of detection (LoD) values depend on molecular structure and range from 20â€ŻÎŒmolL−1 for substituted phenols to 23 mmolL−1 for aliphatics. Rapid cyclic voltammetry (RCV) “fingerprints” showed that the major structural classes of compounds: alkyl/chlorobenzenes, substituted phenols, quaternary ammonium compounds and neutral amines interacted distinctively with the DOPC on Hg and that these observations correlated with and supported those predicted by the COSMOmic simulations of the compound/DMPC association. In addition, the compatibility of the electrochemical and COSMOmic methods validates the electrochemical device as a meaningful high throughput technology to screen compounds in water and report on the mechanistic details of their interaction with phospholipid layers

    Measuring Brain Complexity During Neural Motor Resonance

    Get PDF
    Background: EEG mu-desynchronization is an index of motor resonance (MR) and is used to study social interaction deficiencies, but finding differences in mu-desynchronization does not reveal how nonlinear brain dynamics are affected during MR. The current study explores how nonlinear brain dynamics change during MR. We hypothesized that the complexity of the mu frequency band (8–13 Hz) changes during MR, and that this change would be frequency specific. Additionally, we sought to determine whether complexity at baseline and changes in complexity during action observation would predict MR and changes in network dynamics.Methods: EEG was recorded from healthy participants (n = 45) during rest and during an action observation task. Baseline brain activity was measured followed by participants observing videos of hands squeezing stress balls. We used multiscale entropy (MSE) to quantify the complexity of the mu rhythm during MR. We then performed post-hoc graph theory analysis to explore whether nonlinear dynamics during MR affect brain network topology.Results: We found significant mu-desynchronization during the action observation task and that mu entropy was significantly increased during the task compared to rest, while gamma, beta, theta, and delta bands showed decreased entropy. Moreover, resting-state entropy was significantly predictive of the degree of mu desynchronization. We also observed a decrease in the clustering coefficient in the mu band only and a significant decrease in global alpha efficiency during action observation. MSE during action observation was strongly correlated with alpha network efficiency.Conclusions: The current findings suggest that the desynchronization of the mu wave during MR results in a local increase of mu entropy in sensorimotor areas, potentially reflecting a release from alpha inhibition. This release from inhibition may be mediated by the baseline MSE in the mu band. The dynamical complexity and network analysis of EEG may provide a useful addition for future studies of MR by incorporating measures of nonlinearity

    Using Molecular Initiating Events To Generate 2D Structure-Activity Relationships for Toxicity Screening

    Get PDF
    Molecular initiating events (MIEs) can be boiled down to chemical interactions. Chemicals that interact must have intrinsic properties that allow them to exhibit this behavior, be these properties stereochemical, electronic, or otherwise. In an attempt to discover some of these chemical characteristics, we have constructed structural alert-style structure-activity relationships (SARs) to computationally predict MIEs. This work utilizes chemical informatics approaches, searching the ChEMBL database for molecules that bind to a number of pharmacologically important human toxicology targets, including G-protein coupled receptors, enzymes, ion channels, nuclear receptors, and transporters. By screening these compounds to find common 2D fragments and combining this approach with a good understanding of the literature, bespoke 2D structural alerts have been written. These SARs form the beginning of a tool for screening novel chemicals to establish the kind of interactions that they may be able to make in humans. These SARs have been run through an internal validation to test their quality, and the results of this are also discussed. MIEs have proven to be difficult to find and characterize, but we believe we have taken a key first step with this work.Unileve

    The interpretation of mu suppression as an index of mirror neuron activity: past, present and future

    Get PDF
    Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu’s past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here
    • 

    corecore