15 research outputs found

    Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering

    Full text link
    [EN] This work presents the initial results of the dry-sliding wear behavior of 3 mol% yttria-stabilized zirconia reinforced with 5 vol% alumina-niobium carbide (3Y-TZP/5 vol% Al2O3-NbC) nanocomposites sintered by conventional sintering and spark plasma sintering methods in the temperature range of 1350-1450 degrees C. The reinforcement of 3Y-TZP matrix with hard nanoparticles aimed to improve wear strength of the composites. Wear tests were performed by the ball-on-disc method using alumina (Al2O3) and tungsten carbide with 6 wt% cobalt cermet (WC-6%Co) balls as counter-materials, a load of 15 N, a sliding distance of 2000 m, and a sliding speed of 0.1 m/s. Wear behavior was evaluated in terms of wear rate and FE-SEM micrograph analysis of the wear tracks. The nanocomposite sintered at 1450 degrees C by conventional sintering exhibited the least wear when tested with the WC-6%Co ball. Generally, the wear mechanism showed evidence of severe wear regime with both counter-materials.The authors acknowledge the Brazilian institutions CAPES-PVE (grant number 23038.009604/2013-12), FAPESP (grant number 2015/07319-8), Fundação Araucária (grant number 810/2014), European Union/Erasmus Mundus for doctorate mobility (grant number EB15DM1542), and the Spanish Ministry of Economy and Competitiveness (RYC-2016-20915).Salem, R.; Gutiérrez-González, C.; Borrell Tomás, MA.; Salvador Moya, MD.; Chinelatto, AL.; Chinelatto, AS.; Pallone, E. (2019). Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering. International Journal of Applied Ceramic Technology. 16(3):1265-1273. https://doi.org/10.1111/ijac.13151S12651273163Liu, H., Zhao, W., Ji, Y., Cui, J., Chu, Y., & Rao, P. (2017). Determination of fracture toughness of zirconia ceramics with different yttria concentrations by SEVNB method. Ceramics International, 43(13), 10572-10575. doi:10.1016/j.ceramint.2017.04.064Ćorić, D., Majić Renjo, M., & Ćurković, L. (2017). Vickers indentation fracture toughness of Y-TZP dental ceramics. International Journal of Refractory Metals and Hard Materials, 64, 14-19. doi:10.1016/j.ijrmhm.2016.12.016De Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2002). Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 23(3), 937-945. doi:10.1016/s0142-9612(01)00206-xAragón-Duarte, M. C., Nevarez-Rascón, A., Esparza-Ponce, H. E., Nevarez-Rascón, M. M., Talamantes, R. P., Ornelas, C., … Hurtado-Macías, A. (2017). Nanomechanical properties of zirconia- yttria and alumina zirconia- yttria biomedical ceramics, subjected to low temperature aging. Ceramics International, 43(5), 3931-3939. doi:10.1016/j.ceramint.2016.12.033Balko, J., Csanádi, T., Sedlák, R., Vojtko, M., KovalĿíková, A., Koval, K., … Naughton-Duszová, A. (2017). Nanoindentation and tribology of VC, NbC and ZrC refractory carbides. Journal of the European Ceramic Society, 37(14), 4371-4377. doi:10.1016/j.jeurceramsoc.2017.04.064Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Effect of reinforcement NbC phase on the mechanical properties of Al2O3-NbC nanocomposites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 64, 255-260. doi:10.1016/j.ijrmhm.2016.10.021Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Sliding wear behavior of Al2O3-NbC composites obtained by conventional and nonconventional techniques. Tribology International, 110, 216-221. doi:10.1016/j.triboint.2017.02.028Santos, C., Maeda, L. D., Cairo, C. A. A., & Acchar, W. (2008). Mechanical properties of hot-pressed ZrO2–NbC ceramic composites. International Journal of Refractory Metals and Hard Materials, 26(1), 14-18. doi:10.1016/j.ijrmhm.2007.01.008Ünal, N., Kern, F., Öveçoğlu, M. L., & Gadow, R. (2011). Influence of WC particles on the microstructural and mechanical properties of 3mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing. Journal of the European Ceramic Society, 31(13), 2267-2275. doi:10.1016/j.jeurceramsoc.2011.05.032Sequeira, S., Fernandes, M. H., Neves, N., & Almeida, M. M. (2017). Development and characterization of zirconia–alumina composites for orthopedic implants. Ceramics International, 43(1), 693-703. doi:10.1016/j.ceramint.2016.09.216Schmitt-Radloff, U., Kern, F., & Gadow, R. (2017). Wire-electrical discharge machinable alumina zirconia niobium carbide composites – Influence of NbC content. Journal of the European Ceramic Society, 37(15), 4861-4867. doi:10.1016/j.jeurceramsoc.2017.07.014Akatsu, T., Nakanishi, S., Tanabe, Y., Wakai, F., & Yasuda, E. (2013). Toughening enhanced at elevated temperatures in an alumina/zirconia dual-phase matrix composite reinforced with silicon carbide whiskers. Journal of the European Ceramic Society, 33(15-16), 3157-3163. doi:10.1016/j.jeurceramsoc.2013.05.029Lee, D.-J., Choi, H.-S., Jin, F.-L., & Park, S.-J. (2015). A study on mechanical properties and microstructure of tetragonal zirconia-based composites. Journal of Industrial and Engineering Chemistry, 27, 322-328. doi:10.1016/j.jiec.2015.01.008Salem, R. E. P., Monteiro, F. R., Gutiérrez-González, C. F., Borrell, A., Salvador, M. D., Chinelatto, A. S. A., … Pallone, E. M. J. A. (2018). Effect of Al2O3-NbC nanopowder incorporation on the mechanical properties of 3Y-TZP/Al2O3-NbC nanocomposites obtained by conventional and spark plasma sintering. Ceramics International, 44(2), 2504-2509. doi:10.1016/j.ceramint.2017.10.235Schmitt-Radloff, U., Kern, F., & Gadow, R. (2018). Spark plasma sintering and hot pressing of ZTA-NbC materials – A comparison of mechanical and electrical properties. Journal of the European Ceramic Society, 38(11), 4003-4013. doi:10.1016/j.jeurceramsoc.2018.04.022Pędzich, Z., Haberko, K., Faryna, M., & Sztwiertnia, K. (2002). Interphase Boundary in Zirconia – Carbide Particulate Composites. Key Engineering Materials, 223, 221-226. doi:10.4028/www.scientific.net/kem.223.221Acchar, W., Zollfrank, C., & Greil, P. (2004). Microstructure and mechanical properties of WC-Co reinforced with NbC. Materials Research, 7(3), 445-450. doi:10.1590/s1516-14392004000300012Guillon, O., Gonzalez‐Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., & Herrmann, M. (2014). Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Advanced Engineering Materials, 16(7), 830-849. doi:10.1002/adem.201300409Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 41(3), 763-777. doi:10.1007/s10853-006-6555-2Lu, K. (2008). Sintering of nanoceramics. International Materials Reviews, 53(1), 21-38. doi:10.1179/174328008x254358Borrell, A., Fernández, A., Torrecillas, R., Córdoba, J. M., Avilés, M. A., & Gotor, F. J. (2010). Spark Plasma Sintering of Ultrafine TiCxN1−x Powders Synthesized by a Mechanically Induced Self-Sustaining Reaction. Journal of the American Ceramic Society, 93(8), 2252-2256. doi:10.1111/j.1551-2916.2010.03735.xBonache, V., Salvador, M. D., Fernández, A., & Borrell, A. (2011). Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies. International Journal of Refractory Metals and Hard Materials, 29(2), 202-208. doi:10.1016/j.ijrmhm.2010.10.007Gutiérrez-Mora, F., Cano-Crespo, R., Rincón, A., Moreno, R., & Domínguez-Rodríguez, A. (2017). Friction and wear behavior of alumina-based graphene and CNFs composites. Journal of the European Ceramic Society, 37(12), 3805-3812. doi:10.1016/j.jeurceramsoc.2017.02.024Wei, J., Lin, B., Wang, H., Sui, T., Yan, S., Zhao, F., … Fang, S. (2018). Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition. Tribology International, 119, 45-54. doi:10.1016/j.triboint.2017.10.023Fan, H., Hu, T., Zhang, Y., Fang, Y., Song, J., & Hu, L. (2014). Tribological properties of micro-textured surfaces of ZTA ceramic nanocomposites under the combined effect of test conditions and environments. Tribology International, 78, 134-141. doi:10.1016/j.triboint.2014.05.010Gee, M., & Nunn, J. (2017). Real time measurement of wear and surface damage in the sliding wear of alumina. Wear, 376-377, 1866-1876. doi:10.1016/j.wear.2017.01.114Wang, Y., Yang, Y., Zhao, Y., Tian, W., Bian, H., & He, J. (2009). Sliding wear behaviors of in situ alumina/aluminum titanate ceramic composites. Wear, 266(11-12), 1051-1057. doi:10.1016/j.wear.2008.11.006Krell, A. (1996). Improved hardness and hierarchic influences on wear in submicron sintered alumina. Materials Science and Engineering: A, 209(1-2), 156-163. doi:10.1016/0921-5093(95)10155-1Botta F, W. ., Tomasi, R., Pallone, E. M. J. ., & Yavari, A. . (2001). Nanostructured composites obtained by reactive milling. Scripta Materialia, 44(8-9), 1735-1740. doi:10.1016/s1359-6462(01)00789-8Pallone, E. M. J. ., Trombini, V., Botta F, W. ., & Tomasi, R. (2003). Synthesis of Al2O3–NbC by reactive milling and production of nanocomposites. Journal of Materials Processing Technology, 143-144, 185-190. doi:10.1016/s0924-0136(03)00411-4ASTM G99‐03 Standard test method for wear testing with a pin‐on‐disc apparatus ASTM Annual Book of Standards vol.03. West Conshohocken PA;2003.Chen, W.-H., Lin, H.-T., Chen, J., Nayak, P. K., Lee, A. C., Lu, H.-H., & Huang, J.-L. (2016). Microstructure and wear behavior of spark plasma sintering sintered Al2O3/WC-based composite. International Journal of Refractory Metals and Hard Materials, 54, 279-283. doi:10.1016/j.ijrmhm.2015.07.030Espinosa-Fernández, L., Borrell, A., Salvador, M. D., & Gutierrez-Gonzalez, C. F. (2013). Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear, 307(1-2), 60-67. doi:10.1016/j.wear.2013.08.003Bundschuh, W., & Gahr, K.-H. Z. (1991). Influence of porosity on friction and sliding wear of tetragonal zirconia polycrystal. Wear, 151(1), 175-191. doi:10.1016/0043-1648(91)90356-yBayer, R. J. (2004). Mechanical Wear Fundamentals and Testing, Revised and Expanded. doi:10.1201/9780203021798Zum Gahr, K.-H. (1989). Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact. Wear, 133(1), 1-22. doi:10.1016/0043-1648(89)90109-9Kato, K., & Adachi, K. (2002). Wear of advanced ceramics. Wear, 253(11-12), 1097-1104. doi:10.1016/s0043-1648(02)00240-5Pasaribu, H. R., Sloetjes, J. W., & Schipper, D. J. (2004). The transition of mild to severe wear of ceramics. Wear, 256(6), 585-591. doi:10.1016/j.wear.2003.10.025Wang, S. W., Chen, L. D., Hirai, T., & Kang, Y. S. (1999). Journal of Materials Science Letters, 18(14), 1119-1121. doi:10.1023/a:1006684631127Muñoz, S., & Anselmi-Tamburini, U. (2012). Parametric investigation of temperature distribution in field activated sintering apparatus. The International Journal of Advanced Manufacturing Technology, 65(1-4), 127-140. doi:10.1007/s00170-012-4155-7Xiong, Y., Fu, Z. Y., Wang, H., Wang, Y. C., & Zhang, Q. J. (2005). Microstructure and IR transmittance of spark plasma sintering translucent AlN ceramics with CaF2 additive. Materials Science and Engineering: B, 123(1), 57-62. doi:10.1016/j.mseb.2005.06.02

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Effect of green body density on the properties of graphite-molybdenum-titanium composite sintered by spark plasma sintering

    Full text link
    [EN] This manuscript contains a study about the effect of the degree of compaction of green parts on the properties of a Graphite-5.5 vol. % Molybdenum- 0.6 vol. % Titanium composite obtained by SPS. The composite, sintered at 2000 degrees C, below the eutectic temperature of the C-Mo system (2584 degrees C), exhibits different properties depending on the direction of the applied pressure. On this matter, properties are significantly better in-plane than in the other directions. Samples uniaxially pressed at 60 MPa to obtain the green compact exhibit highly improved properties which are competitive with those obtained under extreme conditions, i.e. uniaxial pressure at 300 MPa and sintering temperature > 2000 degrees C in presence of a liquid phase. The composite production process could be easier scaled up to the industrial level. Thus, this graphite-molybdenum-titanium composite could be used as heat sink in a panoply of applications.This research was funded by the Spanish Ministry of Science and Innovation. Call Programa Estatal de I+D+i Orientada a los Retos de la Sociedad [RTI2018-102269-B-I00] . Daniel Fernandez-Gonzalez acknowledges the grant (Juan de la Cierva-Formacion program) FJC2019-041139-I funded by MCIN/AEI/10.13039/501100011033 (Ministerio de Ciencia e Innovacion, Agencia Estatal de Investigacion). Authors are grateful to Ainhoa Macias San Miguel from Nano-materials and Nanotechnology Research Center (CINN) for providing technical assistance.Suárez, M.; Fernández-González, D.; Gutiérrez-González, C.; Díaz, L.; Borrell Tomás, MA.; Moya, J.; Torrecillas, R.... (2022). Effect of green body density on the properties of graphite-molybdenum-titanium composite sintered by spark plasma sintering. Journal of the European Ceramic Society. 42(5):2048-2054. https://doi.org/10.1016/j.jeurceramsoc.2021.12.0732048205442

    Damage tolerance and R

    No full text

    Influence of ceramic-metal interface adhesion on crack growth resistance of ZrO2-Nb ceramic matrix composites

    No full text
    Yttria-stabilized zirconia strengthened with lamellar flaky-shape Nb metal particles was obtained by hot-pressing at 1500 °C for 1 h. The ZrO2–Nb interface has been studied by atomistic, first-principles calculations and by high-resolution transmission electron microscopy. The influence of the ceramic–metal interface on the crack growth resistance has been investigated. Crack growth is shown to occur with a rising resistance, governed by intact metal ligaments in the crack wake. Crack extension occurs by a combination of plastic deformation on the metal particles and interface debonding. The connection between the interface adhesion and this microstructural toughening mechanism has been evaluated.Unión EuropeaMinisterio de Educación y Ciencia (España)Direccion General de Universidades e Investigacion de la Consejeria de Educacion y Ciencia de la Comunidad de MadridCSICFondo Social EuropeoDepto. de Física de MaterialesFac. de Ciencias FísicasTRUEinpress (En prensa

    First evidence of polar flagella in Klebsiella pneumoniae isolated from a patient with neonatal sepsis

    No full text
    The genus Klebsiella belongs to the family Enterobacteriaceae, and is currently considered to be non-motile and non-flagellated. In the present work, 25 Klebsiella strains isolated from nosocomial infections were assessed for motility under different growth conditions. One Klebsiella isolate, KpBUAP021, demonstrated a swim-like motility phenotype. The K. pneumoniae genotype was confirmed by 16S rRNA and rpoB gene sequence analysis. Multilocus sequence typing analysis also revealed that the KpBUAP021 strain places it in the ST345 sequence type, and belongs to the phylogenetic Kpl group. Transmission electron microscopy and the Ryu staining technique revealed that KpBUAP021 expresses polar flagella. Finally, the presence of fliC, fliA and flgH genes in this K. pneumoniae strain was confirmed. This report presents the first evidence for flagella-mediated motility in a K. pneumoniae clinical isolate, and represents an important finding related to its evolution and pathogenic potential. © 2016 The Authors
    corecore