42 research outputs found

    Virtualización y ampliación del material docente para las prácticas de laboratorio de la asignatura de Biología Celular e Histología

    Get PDF
    Este proyecto pretende facilitar el aprendizaje y mejorar los conocimientos de los alumnos del Grado en Biología sobre los temas tratados en las prácticas de Biología Celular, mediante la elaboración de diverso material docente adicional

    CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans

    Get PDF
    The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses. To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs (HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α(1)β(2). Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are potential sites for therapeutic intervention

    VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts

    Get PDF
    ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA- and HD-SF were stimulated with pro-inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS-4, -5, -7 and -12 expressions, aggrecanase activity,glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn-fs) in OA-SF. After stimulation with interleukin-1b, VIP reduced ADAMTS-4 and -5, and both neuropeptides decreased ADAMTS-7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and b-catenin activation in OA-SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD-SF. In addition,their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn-fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilageaggrecan and the ECM destabilization during joint degradatio

    An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance

    Get PDF
    The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions

    Vasoactive Intestinal Peptide maintains the non-pathogenic profile of human Th17-polarized cells

    Get PDF
    The cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as VIP, a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, VPAC1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation. In this report, we evaluate the capacity of VIP to modulate naïve human cells into Th17 cells in vitro by analyzing their functional phenotype. The presence of VIP maintains the non-pathogenic profile of Th17-polarized cells, increases the proliferation rate and decreases their Th1 potential. VIP induces the up-regulation of the STAT3 gene interaction with the VPAC1 receptor during the onset of Th17 differentiation. Moreover, RORC, RORA and IL-17A genes are up-regulated in the presence of VIP through interaction with VPAC1 and VPAC2 receptors. Interestingly, VIP induces the expression of the IL-23R gene through interaction with the VPAC2 receptor during the expansion phase. This is the first report that describes the differentiation of naïve human T cells to Th17-polarized cells in the presence of VIP and demonstrates how this differentiation regulates the expression of the VIP receptors

    Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibronectin

    Get PDF
    The extracellular matrix (ECM) is a complex and specialized three-dimensional macromolecular network, present in nearly all tissues, that also interacts with cell surface receptors on joint resident cells. Changes in the composition and physical properties of the ECM lead to the development of many diseases, including osteoarthritis (OA). OA is a chronic degenerative rheumatic disease characterized by a progressive loss of synovial joint function as a consequence of the degradation of articular cartilage, also associated with alterations in the synovial membrane and subchondral bone. During OA, ECM-degrading enzymes, including urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), cleave ECM components, such as fibronectin (Fn), generating fibronectin fragments (Fn-fs) with catabolic properties. In turn, Fn-fs promote activation of these proteinases, establishing a degradative and inflammatory feedback loop. Thus, the aim of this review is to update the contribution of ECM-degrading proteinases to the physiopathology of OA as well as their modulation by Fn-fs

    A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases

    Get PDF
    The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP’s discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases

    CCL2 Inhibition of Pro-Resolving Mediators Potentiates Neuroinflammation in Astrocytes

    Get PDF
    The chemokine CCL2 participates in multiple neuroinflammatory processes, mainly through the recruitment of glial cells. However, CCL2 has also been proven to exert different types of actions on these cells, including the modification of their response to inflammatory stimuli. In the present study we analyzed the effect of CCL2 on the resolution of inflammation in astrocytes. We observed that genetic removal of CCL2 increases the expression of the enzymes responsible for the synthesis of specialized pro-resolving mediators arachidonate 15-lipoxygenase and arachidonate 5-lipoxygenase in the brain cortex of 5xFAD mice. The expression of FPR2 receptor, known to mediate the activity of pro-resolving mediators was also increased in mice lacking CCL2.The downregulation of these proteins by CCL2 was also observed in cultured astrocytes. This suggests that CCL2 inhibition of the resolution of inflammation could facilitate the progression of neuroinflammatory processes. The production of the pro-inflammatory cytokine IL-1beta by astrocytes was analyzed, and allowed us to confirm that CCL2 potentiates the activation of astrocytes trough the inhibition of pro-resolving pathways mediated by Resolvin D1. In addition, the analysis of the expression of TNFalpha, MIP1alpha and NOS2 further confirmed CCL2 inhibition of inflammation resolution in astrocytes

    The anti-inflammatory mediator, vasoactive intestinal peptide, modulates the differentiation and function of Th Subsets in rheumatoid arthritis

    Get PDF
    Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis (RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets. Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This “neuroimmunopeptide” modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes, fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor (PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of RA pathology
    corecore