5,397 research outputs found

    Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies

    Full text link
    Geant4 low energy extensions have been used to simulate the X-ray spectra of industrial X-ray tubes with filters for removing the uncertain low energy part of the spectrum in a controlled way. The results are compared with precisely measured X-ray spectra using a silicon drift detector. Furthermore, this paper shows how the different dose rates in silicon and silicon dioxide layers of an electronic device can be deduced from the simulations

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Burst of corneal dendritic cells during Trastuzumab and Paclitaxel treatment

    Get PDF
    During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis

    In vivo confocal microscopy in scarring trachoma.

    Get PDF
    OBJECTIVE: To characterize the tissue and cellular changes found in trachomatous scarring (TS) and inflammation using in vivo confocal microscopy (IVCM). DESIGN: Two complimentary case-control studies. PARTICIPANTS: The first study included 363 cases with TS (without trichiasis), of whom 328 had IVCM assessment, and 363 control subjects, of whom 319 had IVCM assessment. The second study included 34 cases with trachomatous trichiasis (TT), of whom 28 had IVCM assessment, and 33 control subjects, of whom 26 had IVCM assessment. METHODS: All participants were examined with ×2.5 loupes. The IVCM examination of the upper tarsal conjunctiva was carried out with a Heidelberg Retina Tomograph 3 with the Rostock Cornea Module (Heidelberg Engineering GmbH, Dossenheim, Germany). MAIN OUTCOME MEASURES: The IVCM images were graded in a masked manner using a previously published grading system evaluating the inflammatory infiltrate density; the presence or absence of dendritiform cells (DCs), tissue edema, and papillae; and the level of subepithelial connective tissue organization. RESULTS: Subjects with clinical scarring had a characteristic appearance on IVCM of well-defined bands and sheets of scar tissue visible. Similar changes were also seen in some clinically normal subjects consistent with subclinical scarring. Scarred subjects had more DCs and an elevated inflammatory infiltrate, even after adjusting for other factors, including the level of clinical inflammation. Cellular activity was usually seen only in or just below the epithelium, rarely being seen deeper than 30 μm from the surface. The presence of tissue edema was strongly associated with the level of clinical inflammation. CONCLUSIONS: In vivo confocal microscopy can be quantitatively used to study inflammatory and scarring changes in the conjunctiva. Dendritic cells seem to be closely associated with the scarring process in trachoma and are likely to be an important target in antifibrotic therapies or the development of a chlamydial vaccine. The increased number of inflammatory cells seen in scarred subjects is consistent with the immunopathologic nature of the disease. The localization of cellular activity close to the conjunctival surface supports the view that the epithelium plays a central role in the pathogenesis of trachoma. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article

    Atypical cellular elements of unknown origin in the subbasal nerve plexus of a diabetic cornea diagnosed by large-area confocal laser scanning microscopy

    Get PDF
    In vivo large-area confocal laser scanning microscopy (CLSM) of the human eye using EyeGuidance technology allows a large-scale morphometric assessment of the corneal subbasal nerve plexus (SNP). Here, the SNP of a patient suffering from diabetes and associated late complications was analyzed. The SNP contained multiple clusters of large hyperintense, stellate-shaped, cellular-like structures. Comparable structures were not observed in control corneas from healthy volunteers. Two hypotheses regarding the origin of these atypical structures are proposed. First, these structures might be keratocyte-derived myofibroblasts that entered the epithelium from the underlying stroma through breaks in Bowman’s layer. Second, these structures could be proliferating Schwann cells that entered the epithelium in association with subbasal nerves. The nature and pathophysiological significance of these atypical cellular structures, and whether they are a direct consequence of the patient’s diabetic neuropathy/or a non-specific secondary effect of associated inflammatory processes, are unknown

    Mosaic vs. Single Image Analysis with Confocal Microscopy of the Corneal Nerve Plexus for Diagnosis of Early Diabetic Peripheral Neuropathy

    Get PDF
    The assessment of the corneal nerve fibre plexus with corneal confocal microscopy (CCM) is an upcoming but still experimental method in the diagnosis of early stage diabetic peripheral neuropathy (DPN). Using an innovative imaging technique—Heidelberg Retina Tomograph equipped with the Rostock Cornea Module (HRT-RCM) and EyeGuidance module (EG)—we were able to look at greater areas of subbasal nerve plexus (SNP) in order to increase the diagnostic accuracy. The aim of our study was to evaluate the usefulness of EG instead of single image analysis in diagnosis of early stage DPN

    Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy

    Get PDF
    Background: Regarding the growing interest and importance of understanding the cellular changes of the cornea in diseases, a quantitative cellular characterization of the epithelium is becoming increasingly important. Towards this, the latest research offers considerable improvements in imaging of the cornea by confocal laser scanning microscopy (CLSM). This study presents a pipeline to generate normative morphological data of epithelial cell layers of healthy human corneas. Methods: 3D in vivo CLSM was performed on the eyes of volunteers (n=25) with a Heidelberg Retina Tomograph II equipped with an in-house modified version of the Rostock Cornea Module implementing two dedicated piezo actuators and a concave contact cap. Image data were acquired with nearly isotropic voxel resolution. After image registration, stacks of en-face sections were used to generate full-thickness volume data sets of the epithelium. Beyond that, an image analysis algorithm quantified en-face sections of epithelial cells regarding the depth-dependent mean of cell density, area, diameter, aggregation (Clark and Evans index of aggregation), neighbor count and polygonality. Results: Imaging and cell segmentation were successfully performed in all subjects. Thereby intermediated cells were efficiently recognized by the segmentation algorithm while efficiency for superficial and basal cells was reduced. Morphological parameters showed an increased mean cell density, decreased mean cell area and mean diameter from anterior to posterior (5,197.02 to 8,190.39 cells/mm²; 160.51 to 90.29 µm²; 15.9 to 12.3 µm respectively). Aggregation gradually increased from anterior to posterior ranging from 1.45 to 1.53. Average neighbor count increased from 5.50 to a maximum of 5.66 followed by a gradual decrease to 5.45 within the normalized depth from anterior to posterior. Polygonality gradually decreased ranging from 4.93 to 4.64 sides of cells. The neighbor count and polygonality parameters exhibited profound depth-dependent changes. Conclusions: This in vivo study demonstrates the successful implementation of a CLSM-based imaging pipeline for cellular characterization of the human corneal epithelium. The dedicated hardware in combination with an adapted image registration method to correct the remaining motion-induced image distortions followed by a dedicated algorithm to calculate characteristic quantities of different epithelial cell layers enabled the generation of normative data. Further significant effort is necessary to improve the algorithm for superficial and basal cell segmentation
    corecore