43 research outputs found

    Determination of base oil content in lubricating greases by NMR

    Get PDF

    Contact-mediated nucleation in melt emulsions investigated by rheo-nuclear magnetic resonance

    Get PDF
    Increasing the efficiency of disperse phase crystallization is of great interest for melt emulsion production as the fraction of solidified droplets determines product quality and stability. Nucleation events must appear within every single one of the μm-sized droplets for solidification. Therefore, primary crystallization requires high subcooling and is, thus, time and energy consuming. Contact-mediated nucleation is a mechanism for intensifying the crystallization process. It is defined as the successful nucleation of a subcooled liquid droplet induced by contact with an already crystallized droplet. We investigated contact-mediated nucleation under shear flow conditions up to shear rates of 457 s1^{-1} for a quantitative assessment of this mechanism. Rheo-nuclear magnetic resonance was successfully used for the time-resolved determination of the solids fraction of the dispersed phase of melt emulsions upon contact-mediated nucleation events. The measurements were carried out in a dedicated Taylor–Couette cell. The efficiency of contact-mediated nucleation λ\lambdasec_{sec} decreased with increasing shear rate, whereas the effective second order kinetic constant kcoll,eff_{coll, eff} increased approximately linearly at small shear rates and showed a linear decrease for shear rates higher than about 200 s1^{-1}. These findings are in accordance with coalescence theory. Thus, the nucleation rate is optimal at specific flow conditions. There are limitations for successful inoculation at a low shear rate because of rare contact events and at a high shear rate due to too short contact time

    Medium Resolution NMR at 20 MHz: Possibilities and challenges

    Get PDF

    In‐situ characterization of deposits in ceramic hollow fiber membranes by compressed sensing RARE‐MRI

    Get PDF
    Ultrafiltration with ceramic hollow fiber membranes was investigated by compressed sensing rapid acquisition relaxation enhancement (CS-RARE) magnetic resonance imaging (MRI) to characterize filtration mechanisms. Sodium alginate was used as a model substance for extracellular polymeric substances. Dependent on the concentration of divalent ions like Ca21 in an aqueous alginate solution, the characteristics of the filtration change from concentration polarization to a gel layer. The fouling inside the membrane lumen could be measured by MRI with a CS-RARE pulse sequence. Contrast agents have been used to get an appropriate contrast between deposit and feed. The lumen was analyzed quantitatively by exploring the membrane’s radial symmetry, and the resulting intensity could be modeled. Thus, different fouling mechanisms could be distinguished. CS-RARE-MRI was proven to be an appropriate in situ tool to quantitatively characterize the deposit formation during in-out filtration processes. The results were underlined by flux interruption experiments and length dependent studies, which make it possible to differentiate between gel layer or cake filtration and concentration polarization filtration processes

    Structural characterisation of deposit layer during milk protein microfiltration by means of in-situ mri and compositional analysis

    Get PDF
    Milk protein fractionation by microfiltration membranes is an established but still growing field in dairy technology. Even under cross-flow conditions, this filtration process is impaired by the formation of a deposit by the retained protein fraction, mainly casein micelles. Due to deposition formation and consequently increased overall filtration resistance, the mass flow of the smaller whey protein fraction declines within the first few minutes of filtration. Currently, there are only a handful of analytical techniques available for the direct observation of deposit formation with opaque feed media and membranes. Here, we report on the ongoing development of a non-invasive and non-destructive method based on magnetic resonance imaging (MRI), and its application to characterise deposit layer formation during milk protein fractionation in ceramic hollow fibre membranes as a function of filtration pressure and temperature, temporally and spatially resolved. In addition, the chemical composition of the deposit was analysed by reversed phase high pressure liquid chromatography (RP-HPLC). We correlate the structural information gained by in-situ MRI with the protein amount and composition of the deposit layer obtained by RP-HPLC. We show that the combination of in-situ MRI and chemical analysis by RP-HPLC has the potential to allow for a better scientific understanding of the pressure and temperature dependence of deposit layer formation

    Transport and retention of artificial and real wastewater particles inside a bed of settled aerobic granular sludge assessed applying magnetic resonance imaging

    Get PDF
    The removal or degradation of particulate organic matter is a crucial part in biological wastewater treatment. This is even more valid with respect to aerobic granular sludge and the impact of particulate organic matter on the formation and stability of the entire granulation process. Before the organic part of the particulate matter can be hydrolyzed and finally degraded by the microorganism, the particles have to be transported towards and retained within the granulated biomass. The understanding of these processes is currently very limited. Thus, the present study aimed at visualizing the transport of particulate organic matter into and through an aerobic granular sludge bed. Magnetic Resonance Imaging (MRI) was successfully applied to resolve the different fractions of a granular sludge bed over time and space. Quantification and merging of 3D data sets allowed for a clear determination of the particle distribution within the granular sludge bed. Dextran coated super paramagnetic iron oxide nanoparticles (SPIONs
    corecore