Transport and retention of artificial and real wastewater particles inside a bed of settled aerobic granular sludge assessed applying magnetic resonance imaging

Abstract

The removal or degradation of particulate organic matter is a crucial part in biological wastewater treatment. This is even more valid with respect to aerobic granular sludge and the impact of particulate organic matter on the formation and stability of the entire granulation process. Before the organic part of the particulate matter can be hydrolyzed and finally degraded by the microorganism, the particles have to be transported towards and retained within the granulated biomass. The understanding of these processes is currently very limited. Thus, the present study aimed at visualizing the transport of particulate organic matter into and through an aerobic granular sludge bed. Magnetic Resonance Imaging (MRI) was successfully applied to resolve the different fractions of a granular sludge bed over time and space. Quantification and merging of 3D data sets allowed for a clear determination of the particle distribution within the granular sludge bed. Dextran coated super paramagnetic iron oxide nanoparticles (SPIONs

    Similar works