337 research outputs found

    Epitaxial Growth of Thin Films -- a Statistical Mechanical Model

    Full text link
    A theoretical framework is developed to describe experiments on the structure of epitaxial thin films, particularly niobium on sapphire. We extend the hypothesis of dynamical scaling to apply to the structure of thin films from its conventional application to simple surfaces. We then present a phenomenological continuum theory that provides a good description of the observed scattering and the measured exponents. Finally the results of experiment and theory are compared.Comment: 10 pages, 3 figures, minor revisions. accepted for publication in J Phys Condense Matte

    SchilddrĂĽse

    Get PDF

    Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter

    Get PDF
    Optogenetic channels have greatly expanded neuroscience’s experimental capabilities, enabling precise genetic targeting and manipulation of neuron subpopulations in awake and behaving animals. However, many barriers to entry remain for this technology – including low-cost and effective hardware for combined optical stimulation and electrophysiologic recording. To address this, we adapted the open-source NeuroRighter multichannel electrophysiology platform for use in awake and behaving rodents in both open and closed-loop stimulation experiments. Here, we present these cost-effective adaptations, including commercially available LED light sources; custom-made optical ferrules; 3D printed ferrule hardware and software to calibrate and standardize output intensity; and modifications to commercially available electrode arrays enabling stimulation proximally and distally to the recording target. We then demonstrate the capabilities and versatility of these adaptations in several open and closed-loop experiments, demonstrate spectrographic methods of analyzing the results, as well as discuss artifacts of stimulation.Emory University. School of Medicine (Emory Neurosciences Initiative seed grant)American Epilepsy SocietyEpilepsy Foundation of America (Predoctoral fellowship)National Science Foundation (U.S.) (NSF GRFP Fellowship 08-593)National Science Foundation (U.S.) (NSF IGERT Fellowship DGE-0333411)National Science Foundation (U.S.) (NSF EFRI #1238097)National Institutes of Health (U.S.) (NIH 1R01NS079757-01)American Society for Engineering Education (SMART Fellowship

    Parabolic gratings enhance the X-ray sensitivity of Talbot interferograms

    Get PDF
    In grating-based X-ray Talbot interferometry, the wave nature of X-ray radiation is exploited to generate phase contrast images of objects that do not generate sufficient contrast in conventional X-ray imaging relying on X-ray absorption. The phase sensitivity of this interferometric technique is proportional to the interferometer length and inversely proportional to the period of gratings. However, the limited spatial coherency of X-rays limits the maximum interferometer length, and the ability to obtain smaller-period gratings is limited by the manufacturing process. Here, we propose a new optical configuration that employs a combination of a converging parabolic micro-lens array and a diverging micro-lens array, instead of a binary phase grating. Without changing the grating period or the interferometer length, the phase signal is enhanced because the beam deflection by a sample is amplified through the array of converging-diverging micro-lens pairs. We demonstrate that the differential phase signal detected by our proposed set-up is twice that of a Talbot interferometer, using the same binary absorption grating, and with the same overall inter-grating distance

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al
    • …
    corecore