58 research outputs found
Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses
We propose a unified explanation for the origin of dark matter and baryon
number asymmetry on the basis of a non-supersymmetric model for neutrino
masses. Neutrino masses are generated in two distinct ways, that is, a
tree-level seesaw mechanism with a single right-handed neutrino, and one-loop
radiative effects by a new additional doublet scalar. A spontaneously broken
U(1) brings a symmetry which restricts couplings of this new
scalar and controls the neutrino masses. It also guarantees the stability of a
CDM candidate. We examine two possible candidate for the CDM. We also show that
the decay of a heavy right-handed neutrino related to the seesaw mechanism can
generate baryon number asymmetry through leptogenesis.Comment: 21 pages, 3 figures, extended version for publication, references
adde
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
Lung diffusing capacity for nitric oxide at lowered and raised ambient pressures
Lung diffusing capacity for NO (DLNO) was determined in eight subjects at ambient pressures of 505, 1015, and 4053hPa (379, 761 and 3040mmHg) as they breathed normoxic gases. Mean values were 116.9±11.1 (SEM), 113.4±11.1 and 99.3±10.1mlmin-1hPa-1at 505, 1015, and 4053hPa, with a 13% difference between the two higher pressures (P=0.017). The data were applied to a model with two serially coupled conductances; the gas phase (DgNO, variable with pressure), and the alveolo-capillary membrane (DmNO, constant). The data fitted the model well and we conclude that diffusive transport of NO in the peripheral lung is inversely related to gas density. At normal pressure DmNO was approximately 5% larger than DLNO, suggesting that the Dg factor then is not negligible. We also conclude that the density of the breathing gas is likely to impact the backdiffusion of naturally formed NO from conducting airways to the alveoli. © 2013 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
INHALED NITRIC OXIDE THERAPY IN ADULTS: EUROPEAN EXPERT RECOMMENDATIONS
BACKGROUND:
Inhaled nitric oxide (iNO) has been used for treatment of acute respiratory failure and pulmonary hypertension since 1991 in adult patients in the perioperative setting and in critical care.
METHODS:
This contribution assesses evidence for the use of iNO in this population as presented to a expert group jointly organised by the European Society of Intensive Care Medicine and the European Association of Cardiothoracic Anaesthesiologists.
CONCLUSIONS:
Expert recommendations on the use of iNO in adults were agreed on following presentation of the evidence at the expert meeting held in June 2004
- âŠ