5,228 research outputs found
Marriage Markets and Single Motherhood in South Africa
This paper studies the effects of local marriage markets on South African women’s marital decisions. The analysis is motivated by the low proportion of married among African mothers since 48% are never married. This means that the children of all these never married mothers have no access to their fathers' resources. The low sex ratio of 92 men to 100 women among Africans aged 20-40 makes us believe that shortage of marriageable men may explain marriage patterns. Economic theory predicts less attractive marital outcomes for women when the sex ratio is low. We analyze this hypothesis using the 2001 Census of South Africa. An ordered probit model is fitted with the different marital type ranked from less desirable (never married) to more attractive (married civil). The estimation results suggest that both the quantity and quality of marriageable men matter in the marital choice of women who have at least one child. Exposing African women to the White woman’s marriage market and the achievement of educational levels similar to those of Whites increase their probability of marriage by 8%, implying that only 44% of African women are expected to marry even given good marital opportunities and improved levels of education
Observations of spatial and velocity structure in the Orion Molecular Cloud
Observations are reported of H2 IR emission in the S(1) v=1-0 line at 2.121
microns in the Orion Molecular Cloud, OMC1, using the GriF instrument on the
Canada-France-Hawaii Telescope. GriF is a combination of adaptive optics and
Fabry-Perot interferometry, yielding a spatial resolution of 0.15" to 0.18" and
a velocity discrimination as high as 1 km/s. Thanks to the high spatial and
velocity resolution of the GriF data, 193 bright H2 emission regions can be
identified in OMC1. The general characteristics of these features are described
in terms of radial velocities, brightness and spatial displacement of maxima of
velocity and brightness, the latter to yield the orientation of flows in the
plane of the sky. Strong spatial correlation between velocity and bright H2
emission is found and serves to identify many features as shocks. Important
results are: (i) velocities of the excited gas illustrate the presence of a
zone to the south of BN-IRc2 and Peak 1, and the west of Peak 2, where there is
a powerful blue-shifted outflow with an average velocity of -18 km/s. This is
shown to be the NIR counterpart of an outflow identified in the radio from
source I, a very young O-star. (ii) There is a band of weak velocity features
(<5 km/s) in Peak 1 which may share a common origin through an explosive event,
in the BN-IRc2 region, with the fast-moving fingers (or bullets) to the NW of
OMC1. (iii) A proportion of the flows are likely to represent sites of low mass
star formation and several regions show multiple outflows, probably indicative
of multiple star formation within OMC1. The high spatial and velocity
resolution of the GriF data show these and other features in more detail than
has previously been possible.Comment: 27 pages, 19 figures, submitted to A&A Version 2: Several additions,
including a section on protostellar candidates in OMC1, have been made based
on the referee's suggestions v3: corrected typograph
Measurement of charm and bottom production in p+p collisions at = 200 GeV at RHIC-PHENIX
RHIC-PHENIX has observed a large suppression pattern and azimuthal anisotropy
of non-photonic electron at mid-rapidity () in Au+Au
collisions at GeV. To understand these results and the
interaction of heavy quarks in the hot and dense medium, experimental
determination of production ratio of charm over bottom is one of the most
important topics, since the behavior of bottom may differ from charm in the
medium. We measured the ratio of charm over bottom and total cross section of
bottom via partial reconstruction of De K decay in p+p
collisions at GeV. Total cross sections of charm and bottom
were also measured via di-electron continuum in p+p collisions at GeV.Comment: 4pages, 4figures,coferenc
Stars in the age of micro-arc-second astrometry
The understanding and modeling of the structure and evolution of stars is
based on statistical physics as well as on hydrodynamics. Today, a precise
identification and proper description of the physical processes at work in
stellar interiors are still lacking (one key point being that of transport
processes) while the comparison of real stars to model predictions, which
implies conversions from the theoretical space to the observational one,
suffers from uncertainties in model atmospheres. That results in uncertainties
on the prediction of stellar properties needed for galactic studies or
cosmology (as stellar ages and masses). In the next decade, progress is
expected from the theoretical, experimental and observational sides. I
illustrate some of the problems we are faced with when modeling stars and the
possible tracks towards their solutions. I discuss how future observational
ground-based or spatial programs (in particular those dedicated to
micro-arc-second astrometry, asteroseismology and interferometry) will provide
precise determinations of the stellar parameters and contribute to a better
knowledge of stellar interiors and atmospheres in a wide range of stellar
masses, chemical compositions and evolution stages.Comment: 7 pages; to appear in the proceedings of "IAU Symposium 248 - A Giant
Step: from Milli- to Micro-arcsecond Astrometry", held in Shanghai, China,
15-19 Oct. 200
Scaling Limits for Internal Aggregation Models with Multiple Sources
We study the scaling limits of three different aggregation models on Z^d:
internal DLA, in which particles perform random walks until reaching an
unoccupied site; the rotor-router model, in which particles perform
deterministic analogues of random walks; and the divisible sandpile, in which
each site distributes its excess mass equally among its neighbors. As the
lattice spacing tends to zero, all three models are found to have the same
scaling limit, which we describe as the solution to a certain PDE free boundary
problem in R^d. In particular, internal DLA has a deterministic scaling limit.
We find that the scaling limits are quadrature domains, which have arisen
independently in many fields such as potential theory and fluid dynamics. Our
results apply both to the case of multiple point sources and to the
Diaconis-Fulton smash sum of domains.Comment: 74 pages, 4 figures, to appear in J. d'Analyse Math. Main changes in
v2: added "least action principle" (Lemma 3.2); small corrections in section
4, and corrected the proof of Lemma 5.3 (Lemma 5.4 in the new version);
expanded section 6.
On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models
Stellar models have been computed for stars having [Fe/H] = 0.0 and -2.0 to
determine the effects of using boundary conditions derived from the latest
MARCS model atmospheres. The latter were fitted to the interior models at both
the photosphere and at tau = 100, and at least for the 0.8-1.0 solar mass stars
considered here, the resultant evolutionary tracks were found to be nearly
independent of the chosen fitting point. Particular care was taken to treat the
entire star as consistently as possible; i.e., both the interior and atmosphere
codes assumed the same abundances and the same treatment of convection. Tracks
were also computed using either the classical gray T(tau,T_eff) relation or
that derived by Krishna Swamy (1966) to derive the boundary pressure. The
latter predict warmer giant branches (by ~150 K) at solar abundances than those
based on gray or MARCS atmospheres, which happens to be in good agreement with
the inferred temperatures of giants in the open cluster M67 from the latest
(V-K)-T_eff relations. Most of the calculations assumed Z=0.0125 (Asplund et
al.), though a few models were computed for Z=0.0165 (Grevesse & Sauval) to
determine the dependence of the tracks on Z_\odot. Grids of "scaled solar,
differentially corrected" (SDC) atmospheres were also computed to try to
improve upon theoretical MARCS models. When they were used as boundary
conditions, the resultant tracks agreed very well with those based on a
standard scaled-solar (e.g., Krishna Swamy) T(tau,T_eff) relation,
independently of the assumed metal abundance. Fits of isochrones to the C-M
diagram of the [Fe/H] = -2 globular cluster M68 were examined, as was the
possibility that the mixing-length parameter varies with stellar parameters.Comment: 54 pages, including 20 figures and 3 tables; accepted (July 2007) for
publication in the Astrophysical Journa
Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?
Chemically peculiar stars define a class of stars that show unusual elemental
abundances due to stellar photospheric effects and not due to natal variations.
In this paper, we compare the elemental abundance patterns of the ultra
metal-poor stars with metallicities [Fe/H] to those of a subclass of
chemically peculiar stars. These include post-AGB stars, RV Tauri variable
stars, and the Lambda Bootis stars, which range in mass, age, binarity, and
evolutionary status, yet can have iron abundance determinations as low as
[Fe/H] . These chemical peculiarities are interpreted as due to the
separation of gas and dust beyond the stellar surface, followed by the
accretion of dust depleted-gas. Contrary to this, the elemental abundances in
the ultra metal-poor stars are thought to represent yields of the most
metal-poor supernova and, therefore, observationally constrain the earliest
stages of chemical evolution in the Universe. The abundance of the elements in
the photospheres of the ultra metal-poor stars appear to be related to the
condensation temperature of that element; if so, then their CNO abundances
suggest true metallicities of [X/H]~ -2 to -4, rather than their present
metallicities of [Fe/H] < -5.Comment: Accepted for ApJ. 17 pages, 10 figure
Accurate black hole evolutions by fourth-order numerical relativity
We present techniques for successfully performing numerical relativity
simulations of binary black holes with fourth-order accuracy. Our simulations
are based on a new coding framework which currently supports higher order
finite differencing for the BSSN formulation of Einstein's equations, but which
is designed to be readily applicable to a broad class of formulations. We apply
our techniques to a standard set of numerical relativity test problems,
demonstrating the fourth-order accuracy of the solutions. Finally we apply our
approach to binary black hole head-on collisions, calculating the waveforms of
gravitational radiation generated and demonstrating significant improvements in
waveform accuracy over second-order methods with typically achievable numerical
resolution.Comment: 17 pages, 25 figure
Determination of the reaction plane in ultrarelativistic nuclear collisions
In the particles produced in a nuclear collision undergo collective flow, the
reaction plane can in principle be determined through a global event analysis.
We show here that collective flow can be identified by evaluating the reaction
plane independently in two separate rapidity intervals, and studying the
correlation between the two results. We give an analytical expression for the
correlation function between the two planes as a function of their relative
angle. We also discuss how this correlation function is related to the
anisotropy of the transverse momentum distribution. Email contact:
[email protected]: Saclay-T93/026 Email: [email protected]
Search for Low Mass Exotic mesonic structures. Part II: attempts to understand the experimental results
Our previous paper, part I of the same study, shows the different
experimental spectra used to conclude on the genuine existence of narrow,
weakly excited mesonic structures, having masses below and a little above the
pion (M=139.56 MeV) mass. This work \cite{previous} was instigated by the
observation, in the disintegration: pP,
P \cite{park}, of a narrow range of dimuon masses. The
authors conclude on the existence of a neutral intermediate state P, with
a mass M=214.3 MeV 0.5 MeV. We present here some attempts to understand
the possible nature of the structures observed in part I.Comment: 3 pages, 4 figures. Follows 0710.1796. Both replace arXiv:0707.1261
[nucl-ex
- …