31 research outputs found

    Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 3153-3166, doi:10.5194/bg-7-3153-2010.Climate warming in northeastern Siberia may induce thaw-mobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of released carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (δ13C and Δ14C) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-mobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35±15 to 13±9%), whereas coastal erosion OC exhibits a constantly high contribution (51±11 to 60±12%) and marine OC increases offshore (9±7 to 36±10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to ~500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Δ14C ca. −60‰ or ca. 500 14C years) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Δ14C ca. −500‰ or ca. 5500 14C years) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e.g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from degradation of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).The ISSS-08 program was supported by the Knut and Alice Wallenberg Foundation, Headquarters of the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council (VR Contract No. 621-2004-4039 and 621-2007-4631), the US National Oceanic and Atmospheric Administration (Siberian Shelf Study), the Russian Foundation of Basic Research (08-05-13572, 08-05-00191-a, and 07-05-00050a), the Swedish Polar Research Secretariat, the Arctic Co-Op Program of the Nordic Council of Ministers (331080-70219) and the National Science Foundation (OPP ARC 0909546). O¨ . G. also acknowledges financial support as an Academy Research Fellow from the Swedish Royal Academy of Sciences, L. S. a Marie Curie grant (contract no. PIEF-GA-2008-220424), T. E. an NSF grant (ARC-0909377) and A. A. support from the Knut and Alice Wallenberg Foundation

    Исследование огнезащищенных фанерных плит на горючесть и токсичность

    Get PDF
    Ціль роботи порівняльне вивчення звичайних фанерних плит, а також просочених вогнебіозахистною сумішю, яка складається із суміши сольового антипирену та полімерного антисептика ДСА 2, а також гідрофобізуючого препарату «Силол» на горючість та токсичність. В ході роботы було показано, що фанерна плита, яку оброблено вогнебіозахистною сумішю, по показникам горючості та токсич ності значно превосходить не оброблену фанеру.The target of the work is comparative study of plywood — ordinary and pretreated by salt fire retardant and polymeric antiseptic ДСА 2 mixture with hydrophobying composition «Силол» — for the combustibility and the toxicity. It was shown that pretreated plywood is more toxic and less combustible

    An assessment of the use of sediment traps for estimating upper ocean particle fluxes

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 345–416, doi: 10.1357/002224007781567621This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.WG meetings and production of this report was partially supported by the U.S. National Science Foundation via grants to the SCOR. Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation, Swedish Research Council, the International Atomic Energy Agency through its support of the Marine Environmental Laboratory that also receives support from the Government of the Principality of Monaco, and the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 100 (2006): 213-233, doi:10.1016/j.marchem.2005.10.013.Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C/234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C/234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C/234Th either increases or is relatively invariant with increasing particle size (size classes >1 to 100’s μm). Observations also suggest that C/234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C/234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C/234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation and U.S. Department of Energy. S.F. and J.C.M. acknowledge the support provided to the International Atomic Energy Agency (IAEA) Marine Environment Laboratory by the Government of the Principality of Monaco. T.T. acknowledges support from the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship
    corecore