4,107 research outputs found
Model of Thermal Wavefront Distortion in Interferometric Gravitational-Wave Detectors I: Thermal Focusing
We develop a steady-state analytical and numerical model of the optical
response of power-recycled Fabry-Perot Michelson laser gravitational-wave
detectors to thermal focusing in optical substrates. We assume that the thermal
distortions are small enough that we can represent the unperturbed intracavity
field anywhere in the detector as a linear combination of basis functions
related to the eigenmodes of one of the Fabry-Perot arm cavities, and we take
great care to preserve numerically the nearly ideal longitudinal phase
resonance conditions that would otherwise be provided by an external
servo-locking control system. We have included the effects of nonlinear thermal
focusing due to power absorption in both the substrates and coatings of the
mirrors and beamsplitter, the effects of a finite mismatch between the
curvatures of the laser wavefront and the mirror surface, and the diffraction
by the mirror aperture at each instance of reflection and transmission. We
demonstrate a detailed numerical example of this model using the MATLAB program
Melody for the initial LIGO detector in the Hermite-Gauss basis, and compare
the resulting computations of intracavity fields in two special cases with
those of a fast Fourier transform field propagation model. Additional
systematic perturbations (e.g., mirror tilt, thermoelastic surface
deformations, and other optical imperfections) can be included easily by
incorporating the appropriate operators into the transfer matrices describing
reflection and transmission for the mirrors and beamsplitter.Comment: 24 pages, 22 figures. Submitted to JOSA
Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner
We report on the use of a fixed-spacer Fabry–Perot ring cavity to filter spatially and temporally a 10-W laser-diode-pumped Nd:YAG master-oscillator power amplifier. The spatial filtering leads to a 7.6-W TEMinfinity beam with 0.1% higher-order transverse mode content. The temporal filtering reduces the relative power fluctuations at 10 MHz to 2.8 x 10^-/sqrtHz, which is 1 dB above the shot-noise limit for 50 mA of detected photocurrent
RESONANT STRUCTURE IN THE KUIPER DISK: AN ASYMMETRIC PLUTINO DISK
In order to develop a dynamical model of the Kuiper disk, we run numerical integrations of particles originating from source bodies trapped in the 3 : 2 external mean motion resonance with Neptune to determine what percentage of particles remain in the resonance for a variety of particle and source body sizes. The dynamical evolution of the particles is followed from source to sink with Poynting-Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. We find that the number of particles in the 3 : 2 resonance increases with decreasing � (i.e., increasing particle size) for the cases in which the initial source bodies are small (� 10 km in diameter) and that the percentage of particles in resonance is not significantly changed by either the addition of the Lorentz force, as long as the potential of the particles is small (� 5 V), or the effect of neutral interstellar gas drag. The brightness of the entire Kuiper disk is calculated using a model composed of 500 lm diameter particles and fits well with upper limits to the Kuiper disk brightness and previous estimates. A disk with a size-frequency distribution weighted toward large particles, which are more likely to remain in resonance, may have a stronger, more easily identifiable resonant signature than a disk composed of small particles
The mean magnetic field of the sun: Observations at Stanford
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model
Passive, free-space heterodyne laser gyroscope
Laser gyroscopes making use of the Sagnac effect have been used as highly accurate rotation sensors for many years. First used in aerospace and defense applications, these devices have more recently been used for precision seismology and in other research settings. In particular, mid-sized (~1 m-scale) laser gyros have been under development as tilt sensors to augment the adaptive active seismic isolation systems in terrestrial interferometric gravitational wave detectors. The most prevalent design is the 'active' gyroscope, in which the optical ring cavity used to measure the Sagnac degeneracy breaking is itself a laser resonator. In this article, we describe another topology: a 'passive' gyroscope, in which the sensing cavity is not itself a laser but is instead tracked using external laser beams. While subject to its own limitations, this design is free from the deleterious lock-in effects observed in active systems, and has the advantage that it can be constructed using commercially available components. We demonstrate that our device achieves comparable sensitivity to those of similarly sized active laser gyroscopes
Energies and wave functions for a soft-core Coulomb potential
For the family of model soft Coulomb potentials represented by V(r) =
-\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters
Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and
eigenvalues, E_{\nu\ell}, are monotonic in each parameter. The potential
envelope method is applied to obtain approximate analytic estimates in terms of
the known exact spectra for pure power potentials. For the case q =1, the
Asymptotic Iteration Method is used to find exact analytic results for the
eigenvalues E_{\nu\ell} and corresponding wave functions, expressed in terms of
Z and \beta. A proof is presented establishing the general concavity of the
scaled electron density near the nucleus resulting from the truncated
potentials for all q. Based on an analysis of extensive numerical calculations,
it is conjectured that the crossing between the pair of states
[(\nu,\ell),(\nu',\ell')], is given by the condition \nu'\geq (\nu+1) and \ell'
\geq (\ell+3). The significance of these results for the interaction of an
intense laser field with an atom is pointed out. Differences in the observed
level-crossing effects between the soft potentials and the hydrogen atom
confined inside an impenetrable sphere are discussed.Comment: 13 pages, 5 figures, title change, minor revision
Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow
Finite Larmor radius (FLR) effects on non-diffusive transport in a
prototypical zonal flow with drift waves are studied in the context of a
simplified chaotic transport model. The model consists of a superposition of
drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow
perpendicular to the density gradient. High frequency FLR effects are
incorporated by gyroaveraging the ExB velocity. Transport in the direction of
the density gradient is negligible and we therefore focus on transport parallel
to the zonal flows. A prescribed asymmetry produces strongly asymmetric non-
Gaussian PDFs of particle displacements, with L\'evy flights in one direction
but not the other. For zero Larmor radius, a transition is observed in the
scaling of the second moment of particle displacements. However, FLR effects
seem to eliminate this transition. The PDFs of trapping and flight events show
clear evidence of algebraic scaling with decay exponents depending on the value
of the Larmor radii. The shape and spatio-temporal self-similar anomalous
scaling of the PDFs of particle displacements are reproduced accurately with a
neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma
Spectral characteristics for a spherically confined -1/r + br^2 potential
We consider the analytical properties of the eigenspectrum generated by a
class of central potentials given by V(r) = -a/r + br^2, b>0. In particular,
scaling, monotonicity, and energy bounds are discussed. The potential is
considered both in all space, and under the condition of spherical confinement
inside an impenetrable spherical boundary of radius R. With the aid of the
asymptotic iteration method, several exact analytic results are obtained which
exhibit the parametric dependence of energy on a, b, and R, under certain
constraints. More general spectral characteristics are identified by use of a
combination of analytical properties and accurate numerical calculations of the
energies, obtained by both the generalized pseudo-spectral method, and the
asymptotic iteration method. The experimental significance of the results for
both the free and confined potential V(r) cases are discussed.Comment: 16 pages, 4 figure
High Precision Detection of Change in Intermediate Range Order of Amorphous Zirconia-Doped Tantala Thin Films Due to Annealing
Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO_2−Ta_2O_5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra
- …