131 research outputs found

    A Speculation into the Origin of Neutral Globules In Planetary Nebulae: Could the Helix's Comets Really Be Comets?

    Get PDF
    A novel explanation for the origin of the cometary globules within NGC 7293 (the "Helix" planetary nebula) is examined; that these globules originate as massive cometary bodies at large astrocentric radii. The mass of such hypothetical cometary bodies would have to be several orders of magnitude larger than any such bodies observed in our solar system in order to supply the observed mass of neutral gas. It is however shown that comets at "outer Oort cloud" like distances are likely to survive past the red giant and asymptotic giant branch evolutionary phases of the central star, allowing them to survive until the formation of the planetary nebula. Some observational tests of this hypothesis are proposed.Comment: postscript file, 8 pages, no figures. Accepted for publication in the Proceedings of the Astronomical Society of Australi

    Bread and Jelly

    Get PDF

    VLA Observations of H I in the Helix Nebula (NGC 7293)

    Get PDF
    We report the detection of 21-cm line emission from H I in the planetary nebula NGC 7293 (the Helix). The observations, made with the Very Large Array, show the presence of a ring of atomic hydrogen that is associated with the outer portion of the ionized nebula. This ring is most probably gas ejected in the AGB phase that has been subsequently photodissociated by radiation from the central star. The H I emission spreads over about 50 km/s in radial velocity. The mass in H I is approximately 0.07 solar masses, about three times larger than the mass in molecular hydrogen and comparable with the mass in ionized hydrogen.Comment: 19 pages, 9 figure

    The Peekaboo Peek

    Get PDF
    Woman looking out from behind a set of curtainshttps://scholarsjunction.msstate.edu/cht-sheet-music/13825/thumbnail.jp

    Filaments as Possible Signatures of Magnetic Field Structure in Planetary Nebulae

    Full text link
    We draw attention to the extreme filamentary structures seen in high-resolution optical images of certain planetary nebulae. We determine the physical properties of the filaments in the nebulae IC 418, NGC 3132, and NGC 6537, and based on their large length-to-width ratios, longitudinal coherence, and morphology, we suggest that they may be signatures of the underlying magnetic field. The fields needed for the coherence of the filaments are probably consistent with those measured in the precursor circumstellar envelopes. The filaments suggest that magnetic fields in planetary nebulae may have a localized and thread-like geometry.Comment: 26 pages with 7 figures. To be published in PASP. For full resolution images see http://physics.nyu.edu/~pjh

    Sing Again That Sweet Refrain

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6766/thumbnail.jp

    UV (IUE) spectra of the central stars of high latitude planetary nebulae Hb7 and Sp3

    Get PDF
    We present an analysis of the UV (IUE) spectra of the central stars of Hb7 and Sp3. Comparison with the IUE spectrum of the standard star HD 93205 leads to a spectral classification of O3V for these stars, with an effective temperature of 50,000 K. From the P-Cygni profiles of CIV (1550 A), we derive stellar wind velocities and mass loss rates of -1317 km/s +/- 300 km/s and 2.9X10^{-8} solar mass yr^{-1} and -1603 km/s +/- 400 km/s and 7X10^{-9} solar mass yr^{-1} for Hb7 and Sp3 respectively. From all the available data, we reconstruct the spectral energy distribution of Hb7 and Sp3.Comment: 4 pages, 3 figures, latex, accepted for publication in Astronomy & Astrophysic
    corecore