31 research outputs found

    Impact of Forest Fires in Sumatra and Kalimantan to Atmospheric Pollution During Period Of 2010-2015

    Get PDF
    contribute significantly. Pollutant emissions caused by forest fires comprising CO, SO2 and dust (PM10). This paper will be analyzed estimates of pollutant emissions in both Kalimantan and Sumatra using the estimation method based on the amount of material burned. Estimates of the emissions and dispersion of pollutants such as particulates, sulfur dioxide, carbon monoxide were investigated. Distribution and concentration of pollutants used time series of monthly data and spatial map based on satellite data. Extensive data from the 2010-2014 forest fires data from the ministry of the environment and forestry (KLHK) and forest fire data period 2015 from LAPAN. Pollutant concentration data used AIRS on satellite data, OMI satellite and MERRA during 2010-2011 and in 2014-2015, adjusted to the data in situ vast wildfires for both regions. The results of estimation of pollutant emissions in Sumatra shows emissions from forest fires for the period of 2010 greater than in 2011, reaching 9 tons of CO per year, while emissions from fires and plantations during 2011 were higher than in 2010 with a very high value of 150 Tons/year for pollutants CO. In Kalimantan, emissions from forest fires during 2010-2011 CO emissions highest in West Kalimantan 11.13 tons/year and South Kalimantan 12.14 tons of CO per year. Emissions from fires and plantations in South Kalimantan reached 32.11 tons/year.

    ANALISA FAKTOR GAS BUANG KENDARAAN BERBAHAN BAKAR SOLAR MENGGUNAKAN RANCANGAN ACAK LENGKAP (Suatu Aplikasi Matematika dan Statistika Untuk Penelitian Lingkungan)

    Get PDF
    Untuk menangani permasalahan lingkungan hidup yang terkait dengan pencemaran udara dari kendaraan bermotor, pemerintah telah menetapkan batas baku mutu emisi kendaraan bermotor yang tertuang dalam Kepmen LH no 35 tahun 1993. Batas baku mutu untuk opasitas emisi kendaraan berbahan bakar solar yaitu maksimum 50%. Variabel karakteristik kendaraan yang diduga berpengaruh terhadap besarnya opasitas kendaraan berbahan bakar solar antara lain, isi silinder, merk, dan tahun produksi kendaraan. Untuk itu telah dilakukan pengujian pengaruh kapasitas isi silinder kendaraan, tahun produksi kendaraan serta merk kendaraan terhadap opasitas yang dikeluarkan oleh kendaraan berbahan bakar solar. Perlakuan untuk pengaruh tahun produksi kendaraan terbagi menjadi 2 perlakuan yaitu kendaraan yang diproduksi di bawah sampai dengan tahun 2000 (T1) dan kendaraan produksi di atas tahun 2000 (T2). Perlakuan untuk pengaruh kapasitas isi silinder kendaraan terhadap opasitas terbagi menjadi 11 perlakuan (1600 cc, 2200 cc, 2300 cc, 2500 cc, 2700 cc, 2800 cc, 2900 cc, 3300 cc, 3400 cc, 3900 cc, 4200 cc). Perlakuan untuk pengaruh merk kendaraan terhadap opasitas terbagi menjadi 7 perlakuan (Chevrolet, Mitsubishi, Ford, KIA, Daihatsu, Toyota, Isuzu). Hasil menunjukkan bahwa pengaruh tahun produksi kendaraan terhadap opasitas berbeda nyata antara perlakuan T1 dengan T2. Pengaruh kapasitas isi silinder terhadap opasitas juga berbeda nyata antara mobil yang berkapasitas isi silinder di bawah 2800 cc dengan kendaraan yang kapasitas isi silindernya di atas 2900 cc. Kata kunci: opasitas, solar, emisi, kendaraan bermotor

    Estimation of Air Pollutant Emissions in Eastern Indonesia from Non-Oil and Gas Sources (Case Study in Sulawesi and Papua)

    Get PDF
    Estimation of air pollutant emissions from non-oil and gas sources in eastern Indonesia, namely Sulawesi and Papua provinces during the period 2014 – 2016 was conducted. This paper intended to estimate the emission of three air pollutants namely NOx, SO2 and CO2. The aim was to find out the amount of pollutant and greenhouse gas (GHG) emissions in the Sulawesi and Papua regions. The method used was the emission estimation method based on statistical data of Gross Regional Domestic Income (GRDP) in the Papua and Sulawesi regions. The results from estimation of pollutant emissions was then carried out for pollutant emissions mapping. The pollutant emission estimation showed the emission of air pollutants in Sulawesi region was higher than Papua. The mapping of emissions in Sulawesi were consisted of four provinces, namely north, central, south and southeast Sulawesi. The Papua region were consisted of Papua and west Papua provinces. The highest emission in Sulawesi region was south Sulawesi. The CO2 emission in Sulawesi was increase about 23% with the detail value; 84.4 tons in 2014; 94.3 tons in 2015; and 103.7 tons in 2016. The emission of NOx during 2014 until 2016 are 0.53, 0.58 and 0.64 tons, there was an increasing in the emission of NOx around 21%. In addition, SO2 emission of south Sulawesi are 0.42 tons in 2014, 0.47 tons in 2015 and 0.51 tons in 2016, increased about 21 % during the year 2014 - 2016. In the Papua region, the emission in Papua was higher than Papua Barat province. CO2 emissions in Papua during 2014 -2016 were 112, 124.8 and 144.99 tons, it means the CO2 was increased 29%. The emission of NOx during 2014-2016 were 0.70, 0.77 and 0.89 tons, increased around 27%. In addition, SO2 emission was increase 26% with the detail value; 0.56 tons in 2014; 0.61 tons in 2015 and 0.71 tons in 2016.

    Pollutant Concentration and Trajectory Patterns of PM2.5 including Meteo Factors in Jakarta City

    Get PDF
    PM2.5 particulate monitoring has been carried out in South Jakarta. The research objective is to examine the effect of meteorology and pollutant trajectories on PM2.5 conditions based on daily and seasonal patterns from January 2016 to December 2017. The sources of PM2.5 data come from DKI Jakarta BPLHD. The data analysis method uses excel to obtain daily and seasonal PM2.5 patterns (rainy season, transition season and dry season). PM2.5 pollutant trajectory patterns were obtained using a single-Particle Lagrangian Integrated (HYSPLIT) forward trajectory derived from NOAA (National Oceanic and Atmospheric Administration). Then the correlation between PM2.5 with meteorological parameters during 2016-2017 was analyzed. The results showed the maximum concentration of PM2.5 in 2016 occurred in the dry season (June-August) of 57.43 µg/m3 and decreased for 2017 by 50.84 µg/m3. Meanwhile, minimum PM2.5 concentration occurs during the rainy season (December-February) which is equal to 20 µg/m3 in 2016, in 2017 PM2.5 decreases to 15.5 µg/m3. The results of running model (HYSPLIT) forward trajectory of PM2.5 pollutants show when dry season pollutant leads to the western part of Jakarta city while the PM2.5 pollutant in rainy season moved from Jakarta city leads to the eastern region

    Penentuan Komposisi Kimia Air Hujan di Tepi Cekungan Bandung

    Full text link
    Secara topografi Bandung terletak pada 6054'S, 107035'E dan merupakancekungan yang unik. Kondisi pegunungan yang mengelilingi kota Bandung seolahmenjadi penghalang keluarnya polutan dari kota Bandung. Penelitian mengenaikeasaman air hujan telah dilakukan di pusat kota Bandung (Budiwati, dkk 1990-2000) dan menunjukkan telah terjadi hujan asam di kota Bandung. Padapenelitian ini akan diteliti bagaimana pengaruh polutan dari pusat kota terhadapkeasaman air hujan di wilayah tepian cekungan. Dari 7 lokasi pengukuran(Lembang, Padalarang, Soreang, Cipatik, Cikadut, Tangjungsari dan Ciparay)yang di teliti dari bulan Juni-Oktober 2001 diperoleh data bahwa terjadi trendpenurunan pH di semua wilayah. Rata-rata pH masing-masing tempat adalahLembang 5,82; Cipatik 5,85; Padalarang 5,95; Soreang 5,97; Tanjungsari 5,38;Cikadut 6,20 dan Ciparay 6,45

    PENENTUAN KOMPOSISI KIMIA AIR HUJAN DI TEPI CEKUNGAN BANDUNG

    Get PDF
    Secara topografi Bandung terletak pada 6054’S, 107035’E dan merupakancekungan yang unik. Kondisi pegunungan yang mengelilingi kota Bandung seolahmenjadi penghalang keluarnya polutan dari kota Bandung. Penelitian mengenaikeasaman air hujan telah dilakukan di pusat kota Bandung (Budiwati, dkk 1990-2000) dan menunjukkan telah terjadi hujan asam di kota Bandung. Padapenelitian ini akan diteliti bagaimana pengaruh polutan dari pusat kota terhadapkeasaman air hujan di wilayah tepian cekungan. Dari 7 lokasi pengukuran(Lembang, Padalarang, Soreang, Cipatik, Cikadut, Tangjungsari dan Ciparay)yang di teliti dari bulan Juni-Oktober 2001 diperoleh data bahwa terjadi trendpenurunan pH di semua wilayah. Rata-rata pH masing-masing tempat adalahLembang 5,82; Cipatik 5,85; Padalarang 5,95; Soreang 5,97; Tanjungsari 5,38;Cikadut 6,20 dan Ciparay 6,45.Kata Kunci : Hujan asam, Cekungan Bandung

    PENCEMARAN LOGAM BERAT TIMBAL (PB) DI UDARA DAN PAYA PENGHAPUSAN BENSIN BERTIMBAL

    No full text
    RINGKASANPencemaran udara bersumber dari asap cerobong industri dan gas buangan dari kendaraan bermotor, selain itu dapat juga bersumber dari buangan rumah tangga (domestik). Perkembangan otomotif sebagai alat transportasi sangat memudahkan manusia dalam melaksanakan suatu pekerjaan, namun di sisi lain penggunaan kendaraan bermotor menimbulkan dampak buruk terhadap lingkungan, terutama gas buang dari hasil pembakaran bahan bakar yang tidak terurai atau terbakar dengan sempurna. Salah satu zat pencemar udara yaitu logam berat Timbal (Pb) dihasilkan dari pembakaran yang kurang sempurna pada mesin kendaraan. Logam Pb di alam tidak dapat didegradasi atau dihancurkan dan disebut juga sebagai non essential trace element yang paling tinggi kadarnya, sehingga ia sangat berbahaya jika terakumulasi pada tubuh dalam jumlah yang banyak. Logam Pb yang mencemari udara terdapat dalam dua bentuk, yaitu dalam bentuk gas dan partikel-partikel. Saat ini pemerintah telah mengupayakan penghapusan Pb dalam bensin dan menggunakan bahan pengganti Tetra Etil Lead (TEL) guna menghilangkan efek buruk yang ditimbulkan oleh Pb terhadap kesehatan.Hal.95-101 :ilus.; 30 c

    Relationship Of Rain Fall And Humidity With Particulate Matter In Some Cities In Indonesia

    No full text
    The main source of particulate matter combustion of coal, industrial processes (metal industry, chemical industry, cement industry, paper mills, etc.), forest fires and burning of agricultural wastes. Rain is a form of precipitation in liquid form. Rainwater itself can be either solid (such as snow and hail) or aerosol (such as dew and fog). Rain itself is a natural process that is useful for cleaning pollutants in the atmosphere, among other pollutant particles that are suspended in air particles (SPM). Based on the relationship between rain fall with the view that the small atmospheric SPM concentration washing out occurs in the dry months (a small amount of rainfall), and a small amount of dissolved SPM. Conversely, in the wet months (rainfall amounts are high) then a lot of SPM was dissolved in rainwater and atmospheric washing out almost happenHal. 118-12

    Program Langit Biru, di Buang Sayang...

    No full text
    Hal. 15-1
    corecore