8 research outputs found

    Origin and spread of human mitochondrial DNA haplogroup U7

    Get PDF
    Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region

    MiRNAs Regulating Oxidative Stress: A Correlation with Doppler Sonography of Uteroplacental Complex and Clinical State Assessments of Newborns in Fetal Growth Restriction

    No full text
    Overproduction of reactive oxygen species (ROS) and, as a result, uncontrolled oxidative stress (OS) can play a central role in disorders of fetal hemodynamics and subsequent development of adverse perinatal outcomes in newborns with fetal growth restriction (FGR). Given the epigenetic nature of such disorders, the aim of our study was to evaluate the expression of miRNAs associated with OS and endothelial dysfunction (miR-27a-3p, miR-30b-5p, miR-125b-5p, miR-221-3p, miR-451a and miR-574-3p) in umbilical cord blood using real-time quantitative RT-PCR. ΜiRNA expression was evaluated in patients with FGR delivery before (n = 9 pregnant) and after 34 weeks of gestation (n = 13 pregnant), and the control groups corresponding to the main groups by gestational age (13 pregnant women in each group, respectively). A significant increase in miR-451a expression was detected in late-onset FGR and correlations with fetoplacental and cerebral circulation were established (increase of resistance in the umbilical artery (pulsatility index, PI UA (umbilical artery): r = −0.59, p = 0.001) and a decrease in cerebral blood flow (CPR: r = 0.48, p = 0.009)). The change in miR-125b-5p expression in the placenta is associated with reduced Doppler of cerebral hemodynamics (CPR: r = 0.73, p = 0.003; PI MCA (middle cerebral artery): r = 0.79, p = 0.0007), and newborn weight (r = 0.56, p = 0.04) in early-onset FGR. In addition, significant changes in miR-125b-5p and miR-451a expression in umbilical cord blood plasma were found in newborns with neonatal respiratory distress syndrome (NRDS) (in early-onset FGR) and very low birth weight (VLBW) (in late-onset FGR). A number of key signaling pathways have been identified in which the regulation of the studied miRNAs is involved, including angiogenesis, neurotrophin signaling pathway and oxidative stress response. In general, our study showed that changes of the redox homeostasis in the mother-placenta-fetus system in FGR and subsequent perinatal outcomes may be due to differential expression of oxidative stress-associated miRNAs

    Preeclampsia: The Interplay between Oxygen-Sensitive miRNAs and Erythropoietin

    No full text
    Changes in the oxygen partial pressure caused by a violation of uteroplacental perfusion are considered a powerful inducer of a cascade of reactions leading to the clinical manifestation of preeclampsia (PE). At the same time, the induction of oxygen-dependent molecule expression, in particular, miRNA and erythropoietin, is modulated. Therefore, the focus of our study was aimed at estimating the miRNA expression profile of placental tissue and blood plasma in pregnant women with preeclampsia using deep sequencing and quantitative RT-PCR, as well as determining the concentration of erythropoietin. The expression of miR-27b-3p, miR-92b-3p, miR-125b-5p, miR-181a-5p, and miR-186-5p, as regulated by hypoxia/reoxygenation, was significantly increased in blood plasma during early-onset preeclampsia. The possibility of detecting early PE according to the logistic regression model (miR-92b-3p, miR-125b-5p, and miR-181a-5p (AUC = 0.91)) was evaluated. Furthermore, the erythropoietin level, which is regulated by miR-125b-5p, was significantly increased. According to PANTHER14.1, the participation of these miRNAs in the regulation of pathways, such as the hypoxia’s response via HIF activation, oxidative stress response, angiogenesis, and the VEGF signaling pathway, were determined

    Diagnostic Potential of Exosomal HypoxamiRs in the Context of Hypoxia–Sumoylation–HypoxamiRs in Early Onset Preeclampsia at the Preclinical Stage

    No full text
    As the search for non-invasive preclinical markers of preeclampsia (PE) expands, the number of studies on the diagnostic potential of exosomes is growing. Changes in the partial pressure of oxygen caused by impaired uteroplacental perfusion in PE are a powerful inducer of increased production and release of exosomes from cells, which also determine their cargo. At the same time, the expression pattern of oxygen-dependent microRNAs (miRNAs), called “hypoxamiRs”, is modulated, and their packing into exosomes is strictly regulated by sumoylation. In connection therewith, we emphasize the evaluation of exosomal hypoxamiR expression (miR-27b-3p, miR-92b-3p, miR-181a-5p, and miR-186-5p) using quantitative RT-PCR, as well as SUMO 1–4 and UBC9 (by Western blotting), in pregnant women with early-onset PE. The findings show that miR-27b-3p and miR-92b-3p expression was significantly changed at 11–14 and 24–26 weeks of gestation in the blood plasma of pregnant women with early-onset PE, which subsequently manifested. High sensitivity and specificity (AUC = 1) were demonstrated for these miRNAs in the first trimester, and significant correlations with a decrease in hemoglobin (r = 0.71, p = 0.002; r = −0.71, p = 0.002) were established. In mid-pregnancy, the miR-27b-3p expression was found to correlate with an increase in platelets (r = −0.95, p = 0.003), and miR-92b-3p was associated with a decrease in the prothrombin index (r = 0.95, p = 0.003). Specific exomotifs of studied miRNAs were also identified, to which the sumoylated ribonucleoprotein hnRNPA2/B1 binds, carrying out their packaging into exosomes. The expression of conjugated SUMO 1 (p = 0.05), SUMO 2/3/4 (p = 0.03), and UBC9 (p = 0.1) was increased in exosomes at early-onset PE, and the expression of free SUMO 1 (p = 0.03) and SUMO 2/3/4 (p = 0.01) was significantly increased in the placenta, as an adaptive response to hypoxia. Moreover, SUMO 2/3/4 was negatively correlated with miR-27b-3p expression in the placenta. In conclusion, the diagnostic potential of exosomal hypoxamiRs mediated by sumoylation may form the basis for the development of combined specific targets for the treatment of early-onset PE, as hnRNPA2/B1 is a target of miR-27b-3p, and its sumoylation creates miR-27b-3p–hnRNPA2/B1–SUMO 1–4 cross-talk

    Interrelation between miRNAs Expression Associated with Redox State Fluctuations, Immune and Inflammatory Response Activation, and Neonatal Outcomes in Complicated Pregnancy, Accompanied by Placental Insufficiency

    No full text
    Redox disbalance in placental cells leads to the hyperproduction of reactive oxygen species (ROS), it mediates the dysregulation of the maternal immune tolerance to a semi-allogenic fetus, inducing pro-inflammatory reactions, and it plays a central role in perinatal complications and neonatal disease programming. Microvesicles, which provide transplacental communication between a mother and fetus, contain microRNAs (miRNAs) that are sensitive to oxidative stress (OS) mediators and can control the balance of ROS production and utilization in target cells. In the context of this paradigm, we evaluated the markers of redox balance—MDA and 4-HNE for OS and GPx, and SOD, CAT, and GSH for the antioxidant system in the cord blood plasma of newborns diagnosed with fetal growth restriction (FGR)—by using polarography, spectrophotometry, and Western blotting. The expression of miRNAs associated with OS, immune and inflammatory responses in the blood plasma of newborns with intrauterine pneumonia (IP), neonatal sepsis (NS) and respiratory distress syndrome (RDS) was evaluated by a quantitative RT-PCR. Significant differences in the MDA level and reduced GPx and CAT activity were co-found for early-onset FGR (i.e., p ≤ 0.03 and >32 GA; p ≤ 0.009), IP (>32 GA; p ≤ 0.0001), and RDS (>32 GA; p ≤ 0.03). At the same time, the expression of miR-25-3p (p ≤ 0.03) was increased only in newborns with NS (>32 GA; p ≤ 0.03). The risk of developing IVH for premature newborns with IP (AUC = 0.8; cutoff—0.6) and NS (AUC = 0.68; cutoff—0.49) was assessed based on the miR-25-3p and miR-127-3p expression. Several key transcription factors were identified as the targets of studied miRNA since they are involved in the regulation of OS (NRF2), signaling and activation of the immune response (PRDM1, CCL26) and, also, inflammatory responses (NFKB1). The study of these miRNAs showed that they are involved in the modulation of processes leading to perinatal complications. Moreover, miR-127-3p is related to pro-inflammatory reactions and the formation of the macrophage phenotype in newborns with IP, NS, and RDS, while miR-25-3p is associated with an inhibition of macrophage migration and activation of antioxidant enzymes, which may prevent the development of oxidative damage in newborns with NS

    Закономерная связь между развитием некоторых эпигенетических болезней и нарушением метилирования ДНК вследствие дефицита ферментов фолатного цикла

    Get PDF
    Исследование последних лет свидетельствуют о важности процесса метилирования в этиологии и патогенезе многих наследственных заболеваний, что открывает новые возможности их лечения. В работе обсуждается гипотеза – дефицит ферментов генов фолатного цикла сопровождается, в частности, недостатком метильных групп, что в свою очередь, оказывает влияние на эпигенетический статус, приводя к запуску эпимутаций и как следствие – манифестации некоторых эпигенетических и онкогенетических синдромов. На большом клиническом материале с использованием методов клинической протеогеномики показана роль дефицита ферментов фолатного цикла и гипометилирования в манифестации некоторых форм моногенной и хромосомной патологии

    Origin and Diffusion of mtDNA Haplogroup X

    Get PDF
    A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as “X1” and “X2.” The first is restricted to the populations of North and East Africa and the Near East, whereas X2 encompasses all X mtDNAs from Europe, western and Central Asia, Siberia, and the great majority of the Near East, as well as some North African samples. Subhaplogroup X1 diversity indicates an early coalescence time, whereas X2 has apparently undergone a more recent population expansion in Eurasia, most likely around or after the last glacial maximum. It is notable that X2 includes the two complete Native American X sequences that constitute the distinctive X2a clade, a clade that lacks close relatives in the entire Old World, including Siberia. The position of X2a in the phylogenetic tree suggests an early split from the other X2 clades, likely at the very beginning of their expansion and spread from the Near East
    corecore