48 research outputs found

    Novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers

    Get PDF
    An instrument to study the effects of shearing on the crystallization process in semicrystalline polymers is described. It can impose transient stresses similar to those encountered in polymer processing and provides in situ monitoring of microstructure development during and after cessation of flow. Box-like wall shear stress profiles (rise and fall times under 50 ms with maximum wall shear stress on the order of 0.1 MPa) can be applied for controlled durations. A unique feature of our device is that it accommodates a wide variety of real-time probes of structure such as visible and infrared polarimetry and light and x-ray scattering measurements. The design also allows us to retrieve the sample for ex situ optical and electron microscopy. Data are acquired with millisecond resolution enabling us to record the extent of shear deformation of the polymer melt during the pressure pulse. Our device works with small sample quantities (as little as 5 g; each experiment takes ~ 500 mg) as opposed to the kilogram quantities required by previous instruments capable of imposing comparable deformations. This orders-of-magnitude reduction in the sample size allows us to study model polymers and new developmental resins, both of which are typically available only in gram-scale quantities. The compact design of the shear cell makes it possible to transport it to synchrotron light sources for in situ x-ray scattering studies of the evolution of the crystalline structure. Thus, our device is a valuable new tool that can be used to evaluate the crystallization characteristics of resins with experimental compositions or molecular architectures when subjected to processing-like flow conditions. We demonstrate some of the features of this device by presenting selected results on isotactic polypropylenes

    Shear-Enhanced Crystallization in Isotactic Polypropylene. 3. Evidence for a Kinetic Pathway to Nucleation

    Get PDF
    In situ rheo-optical techniques are combined with synchrotron wide-angle X-ray diffraction (WAXD) to investigate the oriented crystallization precursors that develop upon strongly shearing an isothermal melt of polydisperse isotactic polypropylene (iPP). The “short-term shearing” experimental protocol, developed by Janeschitz-Kriegl and co-workers, is used under conditions previously determined to induce oriented crystallite growth. Surprisingly, the time for these precursors to appear decreases with increasing temperature, tracking the melt dynamics of the polymer moleculesa behavior unanticipated by current models. Thus, nucleation proceeds via a “nonclassical” kinetic pathway that effectively eliminates the activation barrier for nucleation. To characterize the importance of chain length distribution for the formation of nucleation precursors, experiments were performed with model bidisperse systems containing a small percentage of high molecular weight iPP blended with lower molecular weight iPP of matched stereoregularity. Oriented crystallization was not observed for the individual components of the blend under the most extreme experimental conditions investigated, but it was readily observed for the bidisperse blend. This suggests that, under intense shear, nucleation of oriented crystallites is governed by the rheologically determined formation of a critical anisotropic configuration of polymer chains in the melt

    Nanoparticle assembly: a perspective and some unanswered questions

    Get PDF
    In early 2016, the Royal Society of Chemistry arranged a meeting on the topic 'Nanoparticle Assemblies: from Fundamentals to Applications' which was hosted at IIT-Bombay, Mumbai. The meeting brought several leading nanoscience and nanotechnology researchers to India and is only the second Faraday Discussions meeting to have been held in the country. The papers presented at the meeting and the resulting active discussions have been summarized in a Faraday Discussion issue(1). The broad range of topics discussed at the meeting led to an understanding on where we stand in the field of nanoparticle assembly, and also enunciated some of the outstanding fundamental and practical issues that remain to be resolved before these ideas can be applied to practical situations. Driven by these ideas, here we focus on four topics/questions: (i) Can we achieve function-driven design of nanoparticle assemblies? (ii) What is the minimal information needed to build a desired assembly? (iii) How complex a structure can one build? How can one make it responsive? What are the relative roles of equilibrium versus dynamics in the assembly process, and are we at a point where we can now pursue active assembly as a viable mode for creating complex assemblies? (iv) What are the applications that are being targeted and what are the barriers to implementation? In this perspective, we do not present an exhaustive survey of the vast literature in this area, but indicate overarching themes/questions that require immediate attention, largely based on the discussions at the Mumbai meeting.open

    The effect of flow history on the crystallization of semicrystalline polymers

    Get PDF
    Semicrystalline polymers constitute well over half of all the polymers produced worldwide. Their material properties depend sensitively on the thermal and flow history experienced during processing which strongly influences the kinetics of phase change and the morphology of the final crystalline microstructure. Therefore, it is of considerable interest to understand the mechanisms of flow effects on the rate and geometry of nucleation and crystal growth. Microstructural development under the influence of flow is controlled by the interplay between melt relaxation processes and crystallization processes: the thermodynamic and kinetic aspects give rise to rich physics that are not well understood. This thesis elucidates key fundamentals of this process. We develop novel instrumentation that improves over prior approaches by examining the development of order at all the length scales of interest (in-situ rheo-optics, synchrotron small angle X-ray scattering (SAXS), and wide angle X-ray diffraction (WAXD), and ex-situ electron and optical microscopy); and by reducing the sample requirement by about three orders of magnitude, opening the way to study of model materials. We investigate a polydisperse, commercial Ziegler-Natta isotactic polypropylene (iPP) using the short term shearing protocol pioneered by the group of Janeschitz-Kriegl which imposes a well defined thermal and flow history on the polymer. Rheo-optical investigations reveal that imposition of brief intervals of shear (less than a thousandth of the quiescent crystallization time) reduces the crystallization time by two orders of magnitude at a crystallization temperature of 141°C. Above a critical value of the shear stress, there is a transition to highly oriented growth with increase in shearing duration. This transition is correlated with changes in the transient behavior during flow and the semicrystalline morphology observed exsitu. During flow, we observe the generation of long-lived, highly oriented structures (evident in the transient birefringence) under all conditions that induce subsequent growth of highly oriented crystallites. In turn, the development of oriented crystallites observed in-situ after cessation of flow correlates with development of a "skin-core" morphology observed ex-situ. The transient structures that develop during flow are identified as oriented [alpha]-phase crystals by WAXD, and show an unexpected temperature dependence for their time of formation: with increase in temperature, they occur at shorter times after startup of flow. This very unusual temperature dependence is strikingly similar to that for rheological processes, and is in contrast to the exponential increase expected for crystallization time-scales. Thus, the transition to anisotropic nucleation in polymers subjected to flow follows a non-classical kinetic pathway controlled by the formation of a transient, highly oriented metastable melt state. In-situ synchrotron SAXS and WAXD reveal that for shearing conditions that lead to anisotropic morphologies, crystals that are highly oriented in the flow direction develop during shear, templating the formation of crystallites after flow cessation. In the densely nucleated skin regions, ex-situ TEM shows lamellae growing radially from oriented central "shish" structures until they impinge to form the "shish-kebab" or row-nucleated structures. Under milder shear conditions, the rate of crystallization is gradual compared to strong shearing, and less oriented morphologies develop. Interestingly the ratio of parent to the crosshatched, epitaxial daughter lamellae for the oriented crystallites increases with increase in shearing time, imposed wall shear stress and temperature. Our data suggests a mechanistic model for shear-enhanced crystallization: the rheologically-controlled formation of a critical anisotropic distribution of chain segments in the melt upon imposition of flow nucleates oriented crystallites. For intense shearing conditions, these line-nuclei are long and dense. Row nucleated structures develop from these line nuclei as lamellae grow radially to form fully impinged structures. For milder shearing conditions, lower nucleation densities lead to the development of less oriented structures

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Omniphilic Polymeric Sponges by Ice Templating

    No full text

    Shear-Enhanced Crystallization in Isotactic Polypropylene. 1. Correspondence between in Situ Rheo-Optics and ex Situ Structure Determination

    No full text
    The effects of “short term shearing” on the subsequent crystallization of a polydisperse Ziegler−Natta isotactic polypropylene are observed using in situ optical measurements and ex situ microscopy. Imposition of brief intervals of shear (0.25−20 s, less than a thousandth of the quiescent crystallization time) can reduce the crystallization time by 2 orders of magnitude (e.g., at 141 °C with a wall shear stress of 0.06 MPa). With increasing shearing time, the crystallization time saturates and highly anisotropic growth ensues. This transition to oriented growth correlates with changes in the transient behavior during flow and the semicrystalline morphology observed ex situ. During flow, we observe the generation of long-lived, highly oriented structures (evident in the transient birefringence) under all conditions that induce subsequent growth of highly oriented crystallites. In turn, the development of oriented crystallites observed in situ after cessation of flow correlates with development of a “skin-core” morphology (highly oriented skin on a spherulitic core) observed ex situ. Interestingly, the long-lived structures generated during flow appear at shorter times with increasing temperature (at fixed shear stress), the opposite of the trend one would expect on the basis of the temperature dependence of quiescent crystallization
    corecore