129 research outputs found

    Unsteady transonic aerodynamic and aeroelastic calculations about airfoils and wings

    Get PDF
    The development and application of transonic small disturbance codes for computing two dimensional flows, using the code ATRAN2, and for computing three dimensional flows, using the code ATRAN3S, are described. Calculated and experimental results are compared for unsteady flows about airfoils and wings, including several of the cases from the AGARD Standard Aeroelastic Configurations. In two dimensions, the results include AGARD priority cases for the NACA 64A006, NACA 64A010, NACA 0012, and MBB-A3 airfoils. In three dimensions, the results include flows about the F-5 wing, a typical wing, and the AGARD rectangular wings. Viscous corrections are included in some calculations, including those for the AGARD rectangular wing. For several cases, the aerodynamic and aeroelastic calculations are compared with experimental results

    Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Get PDF
    This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration

    Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    Get PDF
    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed

    ATRAN3S: An unsteady transonic code for clean wings

    Get PDF
    The development and applications of the unsteady transonic code ATRAN3S for clean wings are discussed. Explanations of the unsteady, transonic small-disturbance aerodynamic equations that are used and their solution procedures are discussed. A detailed user's guide, along with input and output for a sample case, is given

    The Haldane-Rezayi Quantum Hall State and Magnetic Flux

    Full text link
    We consider the general abelian background configurations for the Haldane-Rezayi quantum Hall state. We determine the stable configurations to be the ones with the spontaneous flux of (Z+1/2)ϕ0(\Z+1/2) \phi_0 with ϕ0=hc/e\phi_0 = hc/e. This gives the physical mechanism by which the edge theory of the state becomes identical to the one for the 331 state. It also provides a new experimental consequence which can be tested in the enigmatic ν=5/2\nu=5/2 plateau in a single layer system.Comment: RevTex, 5 pages, 2 figures. v2:minor corrections. v4: published version. Discussion on the thermodynamic limit adde

    Spin-singlet hierarchy in the fractional quantum Hall effect

    Full text link
    We show that the so-called permanent quantum Hall states are formed by the integer quantum Hall effects on the Haldane-Rezayi quantum Hall state. Novel conformal field theory description along with this picture is deduced. The odd denominator plateaux observed around ν=5/2\nu=5/2 are the permanent states if the ν=5/2\nu=5/2 plateau is the Haldane-Rezayi state. We point out that there is no such hierarchy on other candidate states for ν=5/2\nu=5/2. We propose experiments to test our prediction.Comment: RevTex,4 pages, v2:typo,one reference adde

    On osp(2|2) conformal field theories

    Full text link
    We study the conformal field theories corresponding to current superalgebras osp(2∣2)k(1)osp(2|2)^{(1)}_k and osp(2∣2)k(2)osp(2|2)^{(2)}_k. We construct the free field realizations, screen currents and primary fields of these current superalgebras at general level kk. All the results for osp(2∣2)k(2)osp(2|2)^{(2)}_k are new, and the results for the primary fields of osp(2∣2)k(1)osp(2|2)^{(1)}_k also seem to be new. Our results are expected to be useful in the supersymmetric approach to Gaussian disordered systems such as random bond Ising model and Dirac model.Comment: LaTex file 20 pages; Title changed and modifications mad

    The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    Get PDF
    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice this is the first measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.We would like to thank Jan Barkhof for help with the FTS calibration. This work was in part supported by ERC starting Grant Nos. ERC-2009-StG and 240602 TFPA. T. M. Klapwijk acknowledges financial support from the Ministry of Science and Education of Russia under Contract No. 14.B25.31.0007 and from the European Research Council Advanced Grant No. 339306 (METIQUM). P. J. de Visser acknowledges support from a Niels Stensen Fellowship.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.492309

    Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics

    Full text link
    We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the η\eta exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent zz are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time t,t′t,t' response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents λR≠λC\lambda_R \neq \lambda_C, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form X(qz(t−t′),t/t′)X(q^z (t-t'), t/t'). Analogies and differences with pure critical models are discussed.Comment: 33 pages, RevTe
    • …
    corecore